Vol. 126

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-04-04

Investigation of Effective Plasma Frequencies in One-Dimensional Plasma Photonic Crystals

By Chien-Jang Wu, Tzong-Jer Yang, Chang Ching Li, and Pei Yu Wu
Progress In Electromagnetics Research, Vol. 126, 521-538, 2012
doi:10.2528/PIER12030505

Abstract

In this work, a detailed investigation on the effective plasma frequency fp,eff for one-dimensional binary and ternary plasma-dielectric photonic crystals is made. We extract and then analyze the effective plasma frequency from the calculated photonic band structures at distinct conditions. In the binary photonic crystal, it is found that fp,eff in a photonic crystal is usually smaller than the plasma frequency fp of a bulk plasma system. fp,eff will increase when the electron concentration in the plasma layer increases. It also increases as the thickness of the plasma layer increases, but decreases with the increase in the thickness of dielectric layer. In the ternary photonic crystal, fp,eff is shown to be decreased compared to that of in the binary one. Our results are compared with the analytical expression for fp,eff derived from the concept of effective medium. Fairly good consistence has been obtained for both results. Additionally, a discussion on the effect of loss on fp,eff is also given. The study is limited to the case of normal incidence.

Citation


Chien-Jang Wu, Tzong-Jer Yang, Chang Ching Li, and Pei Yu Wu, "Investigation of Effective Plasma Frequencies in One-Dimensional Plasma Photonic Crystals," Progress In Electromagnetics Research, Vol. 126, 521-538, 2012.
doi:10.2528/PIER12030505
http://www.jpier.org/PIER/pier.php?paper=12030505

References


    1. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics ," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
    doi:10.1103/PhysRevLett.58.2059

    2. John, S., "Strong localization of photons in certain disordered lattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
    doi:10.1103/PhysRevLett.58.2486

    3. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and L. E. Thomas, "A dielectric omnidirectional reflector,", Vol. 282, 1679-1682, 1998.

    4. Winn, J. N., Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Optics Lett., Vol. 23, 1573-1575, 1998.
    doi:10.1364/OL.23.001573

    5. Bloemera, M. J. and M. Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett., Vol. 72, 1676-1678, 1998.
    doi:10.1063/1.121150

    6. Choi, Y.-K., Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, "Antireflection film in one-dimensional metallo-dielectric photonic crystals ," Optics Commun., Vol. 230, 239-243, 2004.
    doi:10.1016/j.optcom.2003.11.028

    7. Perze-Rodriguez, F., F. Diaz-Monge, N. M. Makarov, R. Marquez-Islas, and B. Flores-Desirena, "Spatial-dispersion effects in one-dimensional photonic crystals with metallic inclusion," MSWW 07 Symposium Proceedings, 92-97, 2007.

    8. Soto-Puebla, D., M. Xiao, and F. Ramos-Mendieta, "Optical properties of a dielectric-metallic superlattice: The complex photonic bands," Phys. Lett. A, Vol. 326, 273-280, 2004.
    doi:10.1016/j.physleta.2004.03.070

    9. Bermann, O. L., Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, "Superconducting photonic crystals," Phys. Rev. B, Vol. 74, 092505, 2006.
    doi:10.1103/PhysRevB.74.092505

    10. Takeda, H. and K. Yoshino, "Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors," Phys. Rev. B, Vol. 67, 245109, 2005.
    doi:10.1103/PhysRevB.67.245109

    11. Wu, C.-J., M.-S. Chen, and T.-J. Yang, "Photonic band structure for a superconducting-dielectric superlattice," Physica C, Vol. 432, 133-139, 2005.
    doi:10.1016/j.physc.2005.07.019

    12. Lin, W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Terahertz multichanneled filter in a superconducting photonic crystal ," Optics Express, Vol. 18, 27155-27166, 2010.
    doi:10.1364/OE.18.027155

    13. Van Duzer, T. and C. W. Turner, Principles of Superconductive Devices and Circuits, Edward Arnold, London, 1981.

    14. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals," J. Plasma Fusion Res., Vol. 80, 89-90, 2004.
    doi:10.1585/jspf.80.89

    15. Hojo, H. and A. Mase, "Electromagnetic-wave transmittance characteristics in one-dimensional plasma photonic crystals," J. Plasma Fusion Res., SERIES, Vol. 8, 477-479, 2009.

    16. Li, W., Y. Zhao, R. Cui, and H. Zhang, "Plasma photonic crystal," Font. Optoelectron. China, Vol. 2, 103-107, 2009, and references therein.
    doi:10.1007/s12200-009-0004-1

    17. Prasad, S., V. Singh, and A. K. Singh, "Dispersion characteristics and optimization of reflectivity of binary one-dimensional plasma photonic crystal having linearly graded material ," Progress In Electromagnetics Research M, Vol. 22, 149-162, 2012.
    doi:10.2528/PIERM11101004

    18. Manzanares-Martinez, J., "Analytic expression for the effective plasma frequency in one-dimensional metallic-dielectric photonic crystal," Progress In Electromagnetics Research M, Vol. 13, 189-202, 2010.
    doi:10.2528/PIERM10061905

    19. Fan, W. and L. Dong, "Tunable one-dimensional plasma photonic crystals in dielectric barrier discharge," Phys. Plasmas, Vol. 17, 073506, 2010.
    doi:10.1063/1.3456520

    20. Faith, J., S. P. Kuo, and J. Huang, "Frequency downshifting and trapping of an electromagnetic wave by a rapidly created spatially periodic plasma," Phys. Rev. E, Vol. 55, 1843-1851, 1997.
    doi:10.1103/PhysRevE.55.1843

    21. Kuo, S. P. and J. Faith, "Interaction of an electromagnetic wave with a rapidly created spatially periodic plasma," Phys. Rev. E, Vol. 56, 2143-2150, 1997.
    doi:10.1103/PhysRevE.56.2143

    22. Sakai, O., T. Sakaguchi, and K. Tachibana, "Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas," Appl. Phys. Lett., Vol. 87, 241505, 2005.
    doi:10.1063/1.2147709

    23. Sakai, O., T. Sakaguchi, and K. Tachibana, "Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structure of electromagnetic waves," J. Appl. Phys., Vol. 101, 073304, 2007.
    doi:10.1063/1.2713939

    24. Hung, H.-C., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Enhancement of near-infrared photonic band gap in a doped semiconductor photonic crystal," Progress In Electromagnetics Research, Vol. 125, 219-235, 2012.
    doi:10.2528/PIER12010311

    25. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B: Optical Physics, Vol. 23, 2566-2571, 2006.
    doi:10.1364/JOSAB.23.002566

    26. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
    doi:10.2528/PIER08112105

    27. Banerjee, A., "Enhanced incidence angle based spectrum tuning by using one-dimensional ternary photonic band gap structures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1023-1032, 2010.
    doi:10.1163/156939310791586151

    28. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal ," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
    doi:10.2528/PIER10012004

    29. Dai, X. Y., Y. J. Xiang, and S. C.Wen, "Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor," Progress In Electromagnetics Research, Vol. 120, 17-34, 2011.

    30. Prasad, S., V. Singh, and S. K. Singh, "Modal propagation characteristics of EM waves in ternary one-dimensional plasma photonic crystals," Optik, Vol. 121, 1520-1528, 2010.
    doi:10.1016/j.ijleo.2009.02.024

    31. Naumov, A. N. and A. M. Zheltikov, "Ternary one-dimensional photonic band gap structures: Dispersion relation, extended phase-matching abilities and attosecond outlook," Laser Phys., Vol. 11, 879-884, 2001.

    32. Morozov, G. V. and D. W. L. Sprung, "Floquet-Bloch waves in one-dimensional photonic crystals," Europhysics Lett., Vol. 96, 54005, 2011.
    doi:10.1209/0295-5075/96/54005

    33. Yeh, P., Optical Waves in Layered Media, Wiley, New York, 1988.

    34. Morozov, G. V., F. Placido, and D. W. L. Sprung, "Absorptive photonic crystals in 1D," J. Optics, Vol. 13, 035102, 2011.
    doi:10.1088/2040-8978/13/3/035102

    35. Bergmair, M., M. Huber, and K. Hingerl, "Band structure, wiener bounds and coupled surface plasmons in one dimensional photonic crystals," Appl. Phys. Lett., Vol. 89, 081907-081909, 2006.
    doi:10.1063/1.2338546

    36. Naito, T., O. Saikai, and K. Tachibana, "Experimental verification of complex dispersion relation in lossy photonic crystals," Appl. Phys. Express, Vol. 1, 066003, 2008.
    doi:10.1143/APEX.1.066003