Vol. 128
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-05-29
Constrained Trilinear Decomposition with Application to Array Signal Processing
By
Progress In Electromagnetics Research, Vol. 128, 195-214, 2012
Abstract
This paper links the constrained trilinear tensor model into array signal processing. The structure properties of baseband signal, such as the Constant-Modulus (CM) and Finite Alphabet (FA) structures which are already known in the receiving array, are exploited in trilinear decomposition. Two novel algorithms for constrained trilinear decomposition are proposed and applied to array signal processing. The distinguishing features of the proposed model and algorithms compared to the traditional trilinear signal processing methods are: (i)~the proposed model has a better performance and lower computation complexity. (ii)~it can still work well even if degeneracy of factors are involved in the data model, which is not valid in traditional algorithms. Simulation results are presented to illustrate the application of the constrained trilinear decomposition to array signal processing and evaluate the performance of the proposed algorithms in DOAs estimation.
Citation
Xu Liu, Ting Jiang, Longxiang Yang, and Hong-Bo Zhu, "Constrained Trilinear Decomposition with Application to Array Signal Processing," Progress In Electromagnetics Research, Vol. 128, 195-214, 2012.
doi:10.2528/PIER12031410
References

1. Krim, H. and M. Viberg, "Two decades of array signal processing research: the parametric approach," IEEE Signal Processing Magazine, Vol. 13, No. 4, 67-94, 1996.
doi:10.1109/79.526899

2. Zhang, X., X. Gao, and W. Chen, "Improved blind 2D-direction of arrival estimation with L-shaped array using shift invariance property," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 593-606, 2009.
doi:10.1163/156939309788019859

3. Liang, J. and D. Liu, "Two L-Shaped array-based 2-D DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research, Vol. 112, 273-298, 2011.

4. Liang, J., D. Liu, X. Zeng, W. Wang, J. Zhang, and H. Chen, "Joint azimuth-elevation/(-range) estimation of mixed nearfield and far-field sources using two-stage separated steering vector-based algorithm," Progress In Electromagnetics Research, Vol. 113, 17-46, 2011.

5. Mallipeddi, R., J. P. Lie, P. N. Suganthan, S. G. Razul, and C. M. S. See, "A differential evolution approach for robust adaptive beamforming based on joint estimation of look direction and array geometry," Progress In Electromagnetics Research, Vol. 119, 381-394, 2011.
doi:10.2528/PIER11052205

6. Yang, P., F. Yang, and Z.-P. Nie, "DOA estimation with subarray divided technique and interpolated ESPRIT algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
doi:10.2528/PIER10011904

7. Lee, J.-H., Y.-S. Jeong, S.-W. Cho, W.-Y. Yeo, and K. S. J. Pister, "Application of the newton method to improve the accuracy of TOA estimation with the beamforming algorithm and the MUSIC algorithm," Progress In Electromagnetics Research, Vol. 116, 475-515, 2011.

8. Zaharis, Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research, Vol. 117, 165-179, 2011.

9. Sidiropoulos, N. D., R. Bro, and G. B. Giannakis, "Parallel factor analysis in sensor array processing," IEEE Transactions on Signal Processing, Vol. 48, 2377-2388, 2000.
doi:10.1109/78.852018

10. Zhang, X., X. Gao, and Z. Wang, "Blind PARALIND multiuser detection for smart antenna CDMA system over multipath fading channel," Progress In Electromagnetics Research, Vol. 89, 23-38, 2009.
doi:10.2528/PIER08112903

11. Zhang, X., D. Wang, and D. Xu, "Novel blind joint direction of arrival and frequency estimation for uniform linear array," Progress In Electromagnetics Research, Vol. 86, 199-215, 2008.
doi:10.2528/PIER08091205

12. Kruskal, J. B., "Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics," Linear Algebra Applicat., Vol. 18, 95-138, 1977.
doi:10.1016/0024-3795(77)90069-6

13. Sidiropoulos, N. D., G. B. Giannakis, and R. Bro, "Blind PARAFAC receivers for DS-CDMA systems," IEEE Transactions on Signal Processing, Vol. 48, No. 3, 810-823, 2000.
doi:10.1109/78.824675

14. Zhang, X. and D. Xu, "Deterministic blind beamforming for electromagnetic vector sensor array," Progress In Electromagnetics Research, No. 84, 363-377, 2008.
doi:10.2528/PIER08080402

15. Liu, X. and N. D. Sidiropoulos, "Parafac methods for blind beamforming: Multilinear ALS performance and CRB," IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 5, 3128-3131, 2000.

16. Shi, Y. and X. Zhang, "Quadrilinear decomposition-based blind signal detection for polarization sensitive uniform square array," Progress In Electromagnetics Research, Vol. 87, 263-278, 2008.
doi:10.2528/PIER08102005

17. Zhang, X., D. Wang, and D. Xu, "Novel blind joint direction of arrival and polarization estimation for polarization-sensitive uniform circular array," Progress In Electromagnetics Research, Vol. 86, 19-37, 2008.
doi:10.2528/PIER08082302

18. Gong, X. F., Z. W. Liu, and Y. G. Xu, "Regularised parallel factor analysis for the estimation of direction-of-arrival and polarisation with a single electromagnetic vector-sensor," IET Signal Processing, Vol. 5, No. 4, 390-396, 2011.
doi:10.1049/iet-spr.2009.0221

19. Zhang, X., Z. Xu, L. Xu, and D. Xu, "Trilinear decompositionbased transmit angle and receive angle estimation for multipleinput multiple-output radar," IET Radar, Sonar & Navigation, Vol. 5, No. 6, 626-631, 2011.
doi:10.1049/iet-rsn.2010.0265

20. Nion, D. and N. D. Sidiropoulos, "Adaptive algorithms to track the PARAFAC decomposition of a third-order tensor," IEEE Transactions on Signal Processing, Vol. 57, No. 6, 2299-2310, 2009.
doi:10.1109/TSP.2009.2016885

21. Tomasi, G. and R. Bro, "A comparison of algorithms for fitting the PARAFAC model," Computational Statistics & Data Analysis, Vol. 50, 1700-1734, 2006.
doi:10.1016/j.csda.2004.11.013

22. Sergiy, A., R. Yue, N. D. Sidiropoulos, and A. B. Gershman, "Robust iterative fitting of multilinear models," IEEE Transactions on Signal Processing, Vol. 53, No. 8, 2678-2689, 2005.
doi:10.1109/TSP.2005.850343

23. Li, W.-X., Y.-P. Li, and W.-H. Yu, "On adaptive beamforming for coherent interference suppression via virtual antenna array," Progress In Electromagnetics Research, Vol. 125, 165-184, 2012.
doi:10.2528/PIER12010802

24. Park, G. M., H. G. Lee, and S. Y. Hong, "DOA resolution enhancement of coherent signals via spatial averaging of virtually expanded arrays," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 61-70, 2010.
doi:10.1163/156939310790322127

25. Zhang, X., J. Yu, G. Feng, and D. Xu, "Blind direction of arrival estimation of coherent sources using multi-invariance property," Progress In Electromagnetics Research, Vol. 88, 181-195, 2008.
doi:10.2528/PIER08110101

26. Bro, R. and C. A. Anderddon, "Improving the speed of multiway algorithms Part II: Compression," Chemometrics and Intelligent Laboratory Systems, Vol. 42, 105-113, 1998.
doi:10.1016/S0169-7439(98)00011-2

27. Bro, R., "Multi-way analysis in the food industry: Models,algorithms, and applications,", Ph.D. Thesis, University of Amsterdam, Amsterdam, 1998.
doi:10.1016/S0169-7439(98)00011-2

28. Rajih, M., P. Comon, and R. A. Harshman, "Enhanced line search: A novel method to accelerate PARAFAC," SIAM Journal on Matrix Analysis and Applications, Vol. 30, No. 3, 1128-1147, 2008.
doi:10.1137/06065577

29. Nion, D. and L. D. Lathauwer, "An enhanced line search scheme for complex-valued tensor decompositions application in DSCDMA," Signal Processing, Vol. 88, 749-755, 2008.
doi:10.1016/j.sigpro.2007.07.024

30. Bro, R., "PARAFAC. Tutorial and applications," Chemometrics and Intelligent Laboratory Systems, Vol. 38, 149-171, 1997.
doi:10.1016/S0169-7439(97)00032-4

31. Bro, R., R. A. Harshman, N. D. Sidiropoulos, et al. "Modeling multi-way data with linearly dependent loadings," Journal of Chemometrics, Vol. 23, No. 7-8, 324-340, 2009.
doi:10.1002/cem.1206

32. Richard, A. H. and E. L. Margaret, "PARAFAC: Parallel factor analysis," Computational Statistics & Data Analysis, Vol. 18, 39-72, 1994.

33. Van der Veen, A. J., S. Talwar, and A. Paulraj, "Blind identification of FIR channels carrying multiple finite alphabet signals," International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, 1213-1216, 1995.

34. Manioudakis, S., "Blind estimation of space-time coded systems using the finite alphabet-constant modulus algorithm," IEE Proc.--Vis. Image Signal Process., Vol. 153, No. 5, 549-556, 2006.
doi:10.1049/ip-vis:20050155

35. Bro, R. and N. D. Sidropoulos, "Least squares algorithms under unimodality and nonnegativity constraints," J. Chemometr., Vol. 12, 223-247, 1998.
doi:10.1002/(SICI)1099-128X(199807/08)12:4<223::AID-CEM511>3.0.CO;2-2

36. Swindlehurst, A. and T. Kailath, "Algorithms for azimuthelevation direction finding using regular array geometries," IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 1, 145-156, 1993.
doi:10.1109/7.249120