PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 127 > pp. 537-552

A NOVEL DUAL-LOOP COUPLER FOR ONE-PORT CYLINDRICAL CAVITY PERMITTIVITY MEASUREMENT

By H. Zhang, B.-Q. Zeng, L. Ao, and Z. Zhang

Full Article PDF (2,549 KB)

Abstract:
The one-port cavity resonator method based on the S11 parameter measurement technique for measuring the complex permittivity of dielectric samples has been proposed. A novel dual-loop coupler is developed for avoiding and suppressing the spurious modes in one-port cavity resonator. Through threading the pair of half loop in the opposite direction, the opposite surface currents can be generated and only TE011 mode will be excited. The operating principles of the dual-loop coupler are investigated. This technique has the advantages of the coupling. Equivalent electronic circuit model has been set up. Simulation and experimental results show good agreement.

Citation:
H. Zhang, B.-Q. Zeng, L. Ao, and Z. Zhang, "A novel dual-loop coupler for one-port cylindrical cavity permittivity measurement," Progress In Electromagnetics Research, Vol. 127, 537-552, 2012.
doi:10.2528/PIER12032613
http://www.jpier.org/pier/pier.php?paper=12032613

References:
1. Kim, W. G., N. W. Moon, J. M. Kang, and Y. H. Kim, "Loss measuring of large aperture quasi optics for W-band imaging radiometer system," Progress In Electromagnetics Research, Vol. 125, 295-309, 2012.
doi:10.2528/PIER12010502

2. Hasar, U. C. and I. Y. Ozbek, "Complex permittivity determination of lossy materials at millimeter and terahertz frequencies using free-space amplitude measurements," Journal Electromagnetic Wave and Applications, Vol. 25, No. 14-15, 2100-2109, 2011.
doi:10.1163/156939311798072153

3. Seal, M. D., M. W. Hyde IV, and M. J. Havrilla, "Nondestructive complex permittivity and permeability extraction using a twolayer dual-waveguide probe measurement geometry," Progress In Electromagnetics Research, Vol. 123, 123-142, 2012.
doi:10.2528/PIER11111108

4. Hasar, U. C., "Microwave method for thickness-independent permittivity extraction of low-loss dielectric materials from transmission measurements," Progress In Electromagnetics Research, Vol. 110, 453-467, 2010.
doi:10.2528/PIER10101208

5. Hasar, U. C., "Procedure for accurate and stable constitutive parameters extraction of materials at microwave frequencies," Progress In Electromagnetics Research, Vol. 109, 107-121, 2010.
doi:10.2528/PIER10083006

6. Kadirloglu, F. and U. C. Hasar, "A highly accurate microwave method for permittivity determination using corrected scattering parameter measurements," Journal Electromagnetic Wave and Applications, Vol. 24, No. 16, 2179-2189, 2010.
doi:10.1163/156939310793699046

7. Hasar, U. C., "Unique permittivity determination of low-loss dielectric materials from transmission measurements at microwave frequencies," Progress In Electromagnetics Research, Vol. 107, 31-46, 2010.
doi:10.2528/PIER10060805

8. Barroso, J. J. and A. L. de Paula, "Retrieval of permittivity and permeability of homogenous materials from scattering parameters," Journal Electromagnetic Wave and Applications, Vol. 24, No. 11-12, 1563-1574, 2011.
doi:10.1163/156939310792149759

9. Hasar, U. C. and E. A. Oral, "A metric for fast and accurate permittivity determination of low-to-high loss materials from rflection measurements," Progress In Electromagnetics Research, Vol. 107, 397-412, 2010.
doi:10.2528/PIER10071308

10. Hasar, U. C. and Y. Kaya, "Reference-independent microwave method for constitutive parameters determination of liquid materials from measured scattering parameters," Journal Electromagnetic Wave and Applications, Vol. 25, No. 11-12, 1708-1717, 2011.
doi:10.1163/156939311797164756

11. Zhou, Y., E. Li, G. Guo, Y. Gao, and T. Yang, "Broadband complex permittivity measurement of low loss materials over large temperature ranges by stripline resonator cavity using segmentation calculation method," Progress In Electromagnetics Research, Vol. 113, 143-160, 2011.

12. Sheen, J., C.-Y. Li, and S.-W. Lin, "Measurements of microwave dielectric properties of (1-x)TiO2-xCaTiO3 and (1-x)TiO2-xSrTiO3 thin films by the cavity perturbation method," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1886-1894, 2011.
doi:10.1163/156939311797453962

13. Xu, S., L. Yang, L. Huang, and H. S. Chen, "Experimental measurement method to determine the permittivity of extra thin materials using resonant metamaterials," Progress In Electromagnetics Research, Vol. 120, 327-337, 2011.

14. Chang, K., Encyclopedia of RF and Microwave Engineering, 916-937, Hoboken, N. J.,2005.

15. Deshpande, M. D., C. J. Reddy, P. I. Tiemsin, and R. Cravey, "A new approach to estimate complex permittivity of dielectric materials at microwave frequencies using waveguide measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 359-366, March1997.
doi:10.1109/22.563334

16. Bethe, H. A. and J. Schwinger, "Perturbation theory for cavities,", NDRC, Rep,D1-117, 1943.

17. Li, E., Z. Nie, G. Guo, and Q. Zhang, "Broadband measurements of dielectric properties of low-loss materials at high temperatures using circular cavity method," Progress In Electromagnetics Research, Vol. 92, 103-120, 2009.
doi:10.2528/PIER09030904

18. Fang, X., D. Linton, C. Walker, and B. Collins, "A tunable split resonator method for nondestructive permittivity characterization," IEEE Transactions on Instrumentation and Measurement, Vol. 53, 1473-1478, December2004.
doi:10.1109/TIM.2004.827311

19. Altschuler, H. M. and Handbook of Microwave Measurement, , Vol. 2, Sucher, M. and J. Fox, 530, Brooklyn Polytechnic Press, New York,1963.

20. Kraszewski, A. W. and S. O. Nelson, "Observations on resonant cavity perturbation by dielectric objects," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, 151-155, January1992.
doi:10.1109/22.108334

21. Carter, R. G., "Accuracy of microwave cavity perturbation measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, 918-923, May2001.
doi:10.1109/22.920149

22. Galani, Z., M. J. Bianchini, R. C. Waterman, R. Dibiase,R. W. Laton, and J. B. Cole, "Analysis and design of a single resonator GaAs FET oscillator with noise generation," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, 1556-1565, 1984.
doi:10.1109/TMTT.1984.1132894

23. Han, D. H., Y. S. Kim, and M. Kwon, "Two port cavity Q measurement using scattering parameters," Rev. Sci. Instrum., Vol. 67, 2179-2181, 1996.
doi:10.1063/1.1147034

24. Condon, E. U., "Forced oscillations in cavity resonators," Journal of Applied Physics, Vol. 12, 129-132, February1941.
doi:10.1063/1.1712882

25. Jakes, Jr. and W. C., "Analysis of coupling loops in waveguide and application to the design of a diode switch," IEEE Transactions on Microwave Theory and Techniques, Vol. 14, 189-200, April1996.

26. Dean, J. A., Lange's Handbook of Chemistry, 15th Edition,McGraw-Hill, New York, St. Louis, San Francisco, Auckland,Bogota, Caracus, Lisbon, London, Madrid, Mexico, Milan,Montreal, New Delhi, Paris, San Juan, Sao Paulo, Singapore,Sydeny, Tokyo, Toronto,1998.


© Copyright 2014 EMW Publishing. All Rights Reserved