PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 128 > pp. 503-518

MOTION COMPENSATION FOR SQUINT MODE SPOTLIGHT SAR IMAGING USING EFFICIENT 2D INTERPOLATION

By S.-H. Park, J.-I. Park, and K.-T. Kim

Full Article PDF (767 KB)

Abstract:
In the squint mode airborne spotlight synthetic aperture radar system using the range migration algorithm (RMA), autofocus (AF) technique yields poor results due to the squint spreading of the point spread function (PSF) of a scatterer. Thus, two-dimensional (2D) interpolation is required to direct PSF blurring in cross-range direction, to improve the cross-range resolution ¢y and to remove the spatially-varying sidelobe. Because conventional 2D interpolation requires huge computation time and yields large computation errors, we propose an efficient 2D interpolation technique for squint-mode RMA composed of two 1D interpolations. Simulation results using the measured turbulence data show ¢y was improved considerably and PSF was successfully focused by the proposed method with a reduced computation time.

Citation:
S.-H. Park, J.-I. Park, and K.-T. Kim, "Motion compensation for squint mode spotlight SAR imaging using efficient 2D interpolation," Progress In Electromagnetics Research, Vol. 128, 503-518, 2012.
doi:10.2528/PIER12040201
http://www.jpier.org/PIER/pier.php?paper=12040201

References:
1. Xu, H.-Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011.

2. De Cos, M. E., Y. Alvarez Lopez, and F. Las-Heras, "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
doi:10.2528/PIER10060402

3. Gao, P. C., Y. B. Tao, and H. Lin, "Fast RCS prediction using multiresolution shooting and bouncing ray method on the GPU," Progress In Electromagnetics Research, Vol. 107, 187-202, 2010.
doi:10.2528/PIER10061807

4. Soumekh, M., Synthetic Aperturer Radar Signal Processing with MATLAB Algorithms, John Wiley & Sons, Inc., 1999.

5. Chua, Y. M. and V. C. Koo, "FPGA-based chirp generator for high resolution UAV SAR," Progress In Electromagnetics Research, Vol. 99, 71-88, 2009.
doi:10.2528/PIER09100301

6. Sun, J., S. Mao, G.Wang, and W. Hong, "Extended exact transfer function algorithm for bistatic SAR of translational invariant case," Progress In Electromagnetics Research, Vol. 99, 89-108, 2009.
doi:10.2528/PIER09091203

7. Li, C. and D.-Y. Zhu, "A residue-pairing algorithm for INSAR phase unwrapping," Progress In Electromagnetics Research, Vol. 95, 341-354, 2009.
doi:10.2528/PIER09070706

8. Zhang, D. Y., L. Wu, and G. Wei, "A new classifier for polarimetric SAR images," Progress In Electromagnetics Research, Vol. 94, 83-104, 2009.
doi:10.2528/PIER09041905

9. Wu, I. B., M. C. Yeung, Y. Hara, and J. A. Kong, "INSAR height inversion by using 3-D phase projection with multiple baselines," Progress In Electromagnetics Research, Vol. 93, 173-193, 2009.
doi:10.2528/PIER09020902

10. Wei, J. S., X.-L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

11. Park, J. I. and K.-T. Kim, "A comparative study on ISAR imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901

12. Chang, L., C.-Y. Chiang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

13. Wu, J., J. Yang, Y. Huang, Z. Liu, and H. Yang, "A new look at the point target reference spectrum for bistatic SAR," Progress In Electromagnetics Research, Vol. 119, 363-379, 2011.
doi:10.2528/PIER11050704

14. Guo, D., H. Xu, and J. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.

15. Liu, C., X. Gao, W. Jiang, and X. Li, "Interferometric INSAR three-dimensional imaging using one antenna," Progress In Electromagnetics Research M, Vol. 21, 33-45, 2011.
doi:10.2528/PIERM11070803

16. Ren, X.-Z., Y. F. Li, and R. Yang, "Four-dimensional SAR imaging scheme based on compressive sensing," Progress In Electromagnetics Research B, Vol. 39, 225-239, 2012.
doi:10.2528/PIERB11121212

17. Ren, X.-Z., Y. Qin, and L. H. Qiao, "Interferometric properties and processing for spaceborne spotlight SAR," Progress In Electromagnetics Research, Vol. 36, 267-281, 2012.
doi:10.2528/PIERB11090609

18. Lim, T. S., C.-S. Lim, V. C. Koo, H.-T. Ewe, and H.-T. Chuah, "Autofocus algorithms performance evaluations using an inte-grated SAR product simulator and processor," Progress In Electromagnetics Research B, Vol. 3, 315-329, 2008.
doi:10.2528/PIERB07122101

19. Chan, Y. K., V. C. Koo, C. Y. Ang, K. S. Yee, and M. Y. Chua, "Design and development of a C-band RF transceiver for UAVSAR," Progress In Electromagnetics Research C, Vol. 24, 1-12, 2011.
doi:10.2528/PIERC11071908

20. Park, S.-H., M.-G. Joo, and K.-T. Kim, "Construction of ISAR training database for automatic target recognition," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1493-1503, 2011.
doi:10.1163/156939311797164909

21. Woo, J.-C., B.-G. Lim, and Y.-S. Kim, "Modification of the recursive sidelobe minimization technique for the range-doppler algorithm of SAR imaging," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1783-1794, 2011.
doi:10.1163/156939311797453926

22. Dai, C. Y. and X. L. Zhang, "Omega-K algorithm for bistatic SAR with arbitrary geometry configuration," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11-12, 1564-1576, 2011.
doi:10.1163/156939311797164972

23. Angulo, L. D., S. G. Garcia, M. F. Pantoja, C. C. Sanchez, and R. G. Martín, "Improving the SAR distribution in petri-dish cell cultures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 815-826, 2010.
doi:10.1163/156939310791036322

24. Park, S.-H., D.-H. Kim, and K.-T. Kim, "SAR motion compensation for Korean MUAV," Asia-Pacific Int. Conf. on Syn.Aper. Radar, Sep.2011.

25. Li, X., G. Liu, and J. Ni, "Autofocusing of ISAR images based on entropy minimization," IEEE Trans. Aerosp. Electron. Syst., Vol. 35, No. 4, 1240-1251, Oct.1999.
doi:10.1109/7.805442

26. Shin, H.-S. and J.-T. Lim, "Range migration algorithm for airborne squint mode spotlight SAR imaging," IET Radar Sonar Navig., Vol. 1, No. 1, 77-82, Feb.2007.
doi:10.1049/iet-rsn:20060080

27. Wu., J., Y. Huang, J. Xiong, and J. Yang, "Range migration algorithm in bistatic SAR based on squint mode," 2007 IEEE Rad. Conf., 579-584, Apr.2007.
doi:10.1109/RADAR.2007.374283

28. Faires, J. D. and R. Burden, Numerical Methods, Brooks/Cole, 2003.

29. Jakowatz, C. V., D. E. Wahl, D. A. Yocky, B. K. Bray, W. J. Bow,and J. A. Richards, "Comparison of algorithms for use in real-time spotlight-mode SAR image formation," Proc. of SPIE, Vol. 5427, 108-116, Sep.2004.
doi:10.1117/12.548203

30. Kolmogorov, A. N., "Sur l'interpolation et l'extrapolation des suites stationnairres," C. R. Acad. Sci., Vol. 203, 2043-2045, 1939.

31. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, 2007.


© Copyright 2014 EMW Publishing. All Rights Reserved