PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 129 > pp. 33-49

MODELING OF OPTICAL TRAPPING USING DOUBLE NEGATIVE INDEX FISHNET METAMATERIALS

By T. Cao and M. J. Cryan

Full Article PDF (339 KB)

Abstract:
We calculate the optical force exerted on the nanoparticle close proximity to the surface of fishnet metamaterials based on metal/dielectric/metal films when irradiated at near infrared wavelength. These forces show the resonant frequencies similar to the magnetic resonant frequencies in the double negative index fishnet metamaterial. We also present that the optical force can be enhanced by optimizing the geometry of the fishnet to provide a stronger magnetic resonant dipole. In contrast to the other plasmonic nanostructure always obtaining trapping force using electrical resonant dipole, our presented structure utilizes the magnetic resonance to provide a gradient force, which is suitable for the optical trapping of the nanoscale particles at illumination intensities of just 1 mW/μm2, the optical force is sufficient to overcome the Earth's gravitational pull.

Citation:
T. Cao and M. J. Cryan, "Modeling of Optical Trapping Using Double Negative Index Fishnet Metamaterials," Progress In Electromagnetics Research, Vol. 129, 33-49, 2012.
doi:10.2528/PIER12050309
http://www.jpier.org/PIER/pier.php?paper=12050309

References:
1. Ashkin, A., J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Optics Letters, Vol. 11, No. 5, 288-290, 1986.
doi:10.1364/OL.11.000288

2. Roichman, Y., B. Sun, A. Stolarski, and D. G. Grier, "Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: The fountain of probability," Physical Review Letters, Vol. 101, No. 12, 128301(1-4), 2008.

3. MacDonald, M. P., G. C. Spalding, and K. Dholakia, "Microfluidic sorting in an optical lattice," Nature, Vol. 426, 421-424, 2003.
doi:10.1038/nature02144

4. Eriksson, E., J. Enger, B. Nordlander, N. Erjavec, K. Ramser, M. Goksor, S. Hohmann, T. Nystrom, and D. Hanstorp, "A microfluidic system in combination with optical tweezers fo analyzing rapid and reversible cytological alterations in single cells upon environmental changesr," Lab on a Chip, Vol. 7, 71-76, 2007.
doi:10.1039/b613650h

5. Yang, A. H. J., S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature, Vol. 457, 71-75, 2009.
doi:10.1038/nature07593

6. Mandal, S., X. Serey, and D. Eickson, "Nanomanipulation using silicon photonic crystal resonators," Nano Letters, Vol. 10, 99-104, 2010.
doi:10.1021/nl9029225

7. Roichman, Y., B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, "Optical forces arising from phase gradients," Physical Review Letters, Vol. 100, No. 1, 013602(1-4) 2008.

8. Karásek, V., T. Cizmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Long-range one-dimensional longitu-dinal optical binding," Physical Review Letters, Vol. 101, No. 14, 143601(1-4), 2008.

9. Albaladejo, S., M. I. Marqués, M. Laroche, and J. J. Sáenz, "Scattering forces from the curl of the spin angular momentum of a light field," Physical Review Letters, Vol. 102, No. 11, 113602(1-4), 2009.

10. Ng, J., Z. F. Lin, and C. T. Chan, "Theory of optical trapping by an optical vortex beam," Physical Review Letters, Vol. 104, No. 10, 103601(1-4), 2010.

11. Novitsky, A., C. W. Qiu, and H. F. Wang, "Single gradientless light beam drags particles as tractor beams," Physical Review Letters, Vol. 107, No. 20, 203601(1-4), 2011.

12. Novotny, L., R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Physical Review Letters, Vol. 79, No. 4, 645-648, 1997.
doi:10.1103/PhysRevLett.79.645

13. Quidant, R., D. Petrov, and G. Badenes, "Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field," Optics Letters, Vol. 30, No. 9, 1009-1011, 2005.
doi:10.1364/OL.30.001009

14. Xu, H. and M. Kall, "Surface-plasmon-enhanced optical forces in silver nanoaggregates," Physical Review Letters, Vol. 89, No. 24, 246802(1-4), 2002.

15. Ishikawa, A., S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, "Deep subwavelength terahertz waveguides using gap magnetic plasmon," Physical Review Letters, Vol. 102, No. 4, 043904(1-4), 2009.

16. Choi, H., D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, "Compressing surface plasmons for nano-scale optical focusing," Optics Express, Vol. 17, No. 9, 7519-7524, 2009.
doi:10.1364/OE.17.007519

17. Nome, R. A., M. J. Guffey, N. F. Scherer, and S. K. Gray, "Plasmonic interactions and optical forces between au bipyramidal nanoparticle dimers," The Journal of Physical Chemistry A, Vol. 113, No. 16, 4408-4415, 2009.
doi:10.1021/jp811068j

18. Woolf, D., M. Loncar, and F. Capasso, "The forces from coupled surface plasmon polaritons in planar waveguides," Optics Express, Vol. 17, No. 22, 19996-20011, 2009.
doi:10.1364/OE.17.019996

19. Ambrosio, L. A. and H. E. Hernández-Figueroa, "Fundamentals of negative refractive index optical trapping: Forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory," Biomedical Optics Express, Vol. 1, 1284-1301, 2010.
doi:10.1364/BOE.1.001284

20. Ambrosio, L. A. and H. E. Hernández-Figueroa, "Radiation pressure cross sections and optical forces over negative refractive index spherical particles by ordinary bessel beams," Applied Optics, Vol. 50, 4489-4498, 2011.
doi:10.1364/AO.50.004489

21., Ambrosio, L. A. and H. E. Hernández-Figueroa, "Spin angular momentum transfer from plane waves and azimuthally symmetric focused beams to negative refractive index spherical particles," Biomedical Optics Express, Vol. 2, 2354-2363, 2011.
doi:10.1364/BOE.2.002354

22. Ploschner, M., M. Mazilu, T. F. Krauss, and K. Dholakia, "Optical forces near a nanoantenna," Journal of Nanophotonics, Vol. 4, 041570(1-13), 2010.

23. Grigorenko, A. N., N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photonics, Vol. 2, 365-370, 2008.
doi:10.1038/nphoton.2008.78

24. Righini, M., P. Ghenuche, S. Cherukulappurath, V. Myroshny-chenko, F. J. Garcia de Abajo, and R. Quidant, "Nano-optical trapping of rayleigh particles and escherichia coli bacteria with resonant optical antennas," Nano Letters, Vol. 9, No. 10, 3387-3391, 2009.
doi:10.1021/nl803677x

25. Tsuboi, Y., T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, "Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon," The Journal of Physical Chemistry Letters, Vol. 1, No. 15, 2327-2333, 2010.
doi:10.1021/jz100659x

26. Roxworthy, B. J., K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, "Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting," Nano Letters, Vol. 12, No. 2, 796-801, 2012.
doi:10.1021/nl203811q

27. Chen, H., L. Ran, J. Huangfu, X. M. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Magnetic properties of S-shaped split-ring resonators," Progress In Electromagnetics Research, Vol. 51, 231-247, 2005.
doi:10.2528/PIER04051201

28. Chen, H. S., L. Huang, and X. X. Cheng, "Magnetic properties of metamaterial composed of closed rings," Progress In Electromagnetics Research, Vol. 115, 317-326, 2011.

29. Zhang, S., W. Fan, K. J. Malloy, S. R. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Optics Express, Vol. 13, No. 13, 4922-4930, 2005.
doi:10.1364/OPEX.13.004922

30. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Physical Review Letters, Vol. 95, No. 13, 137404(1-4), 2005.

31. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies," Journal of the Optical Society of America B, Vol. 23, No. 3, 434-438, 2006.
doi:10.1364/JOSAB.23.000434

32. Menzel, C., C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, "Retrieving effective parameters for metamaterials at oblique incidence," Physical Review B, Vol. 77, 195328(1-8), 2008.

33. Ourir, A., R. Abdeddaim, and J. de Rosny, "Tunable trapped mode in symmetric resonator designed for metamaterials," Progress In Electromagnetics Research, Vol. 101, 115-123, 2010.
doi:10.2528/PIER09120709

34. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603

35. Duan, Z., Y. Wang, X. Mao, W.-X. Wang, and M. Chen, "Experimental demonstration of double-negative metamaterials partially filled in a circular waveguide," Progress In Electromagnetics Research, Vol. 121, 215-224, 2011.
doi:10.2528/PIER11090502

36. Feng, T., Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen, "Tunable single-negative metamaterials based on microstrip transmission line with varactor diodes loading," Progress In Electromagnetics Research, Vol. 120, 35-50, 2011.

37. Xu, S., L. Yang, L. Huang, and H. Chen, "Experimental measurement method to determine the permittivity of extra thin materials using resonant metamaterials," Progress In Electromagnetics Research, Vol. 120, 327-337, 2011.

38. Shao, J., H. Zhang, Y. Lin, and H. Xin, "Dual-frequency electromagnetic cloaks enabled by Lc-based metamaterial circuits," Progress In Electromagnetics Research, Vol. 119, 225-237, 2011.
doi:10.2528/PIER11052507

39. Zhou, H., F. Ding, Y. Jin, and S. He, "Terahertz metamaterial modulators based on absorption," Progress In Electromagnetics Research, Vol. 119, 449-460, 2011.
doi:10.2528/PIER11061304

40. Navarro-Cia, M., V. Torres Landivar, M. Beruete, and M. Sorolla Ayza, "A slow light fishnet-like absorber in the millimeter-wave range," Progress In Electromagnetics Research, Vol. 118, 287-301, 2011.
doi:10.2528/PIER11053105

41. Araujo, M. G., J. M. Taboada, J. Rivero, and F. Obelleiro, "Comparison of surface integral equations for left-handed materials," Progress In Electromagnetics Research, Vol. 118, 425-440, 2011.
doi:10.2528/PIER11031110

42. Giamalaki, M. I. and I. S. Karanasiou, "Enhancement of a microwave radiometry imaging system's performance using left handed materials," Progress In Electromagnetics Research, Vol. 117, 253-265, 2011.

43. Li, J., F.-Q. Yang, and J. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

44. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research, Vol. 116, 409-423, 2011.

45. Liu, S.-H. and L.-X. Guo, "Negative refraction in an anisotropic metamaterial with a rotation angle between the principal axis and the planar interface," Progress In Electromagnetics Research, Vol. 115, 243-257, 2011.

46. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

47. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

48. Choi, J. and C. Seo, "High-effciency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress In Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609

49. García-Meca, C., J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Physical Review Letters, Vol. 106, No. 6, 067402(1-4), 2011.

50. Zhao, R., P. Tassin, T. Koschny, and C. M. Soukoulis, "Optical forces in nanowire pairs and metamaterials," Optics Express, Vol. 18, No. 25, 25665-25676, 2010.
doi:10.1364/OE.18.025665

51. Zhang, J., K. F. MacDonald, and N. I. Zheludev, "Optical gecko toe: Optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces," Physical Review B, Vol. 85, No. 20, 205123(1-5), 2012.

52. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

53. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

54. Simovski, C. R., "Bloch material parameters of magnetodielectric metamaterials and the concept of Bloch lattices," Metamaterials, Vol. 1, 62-80, 2007.
doi:10.1016/j.metmat.2007.09.002

55. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coeffcients," Physical Review B, Vol. 65, No. 19, 195104(1-5), 2002.

56. Hao, J., L. Zhou, and M. Qiu, "Nearly total absorption of light and heat generation by plasmonic metamaterials," Physical Review B, Vol. 83, No. 16, 165107(1-12), 2011.


© Copyright 2014 EMW Publishing. All Rights Reserved