Vol. 129
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-07-13
The Use of Dielectric Mixture Equations to Analyze the Dielectric Properties of a Mixture of Rubber Tire Dust and Rice Husks in a Microwave Absorber
By
Progress In Electromagnetics Research, Vol. 129, 559-578, 2012
Abstract
A change in the relative proportions of a mixture of rubber tire dust and rice husks will cause a change in the mixture's electrical permittivity and its ability to absorb electromagnetic energy. An open-ended, coaxial probe was used in conjunction with three dielectric mixture equations (the Kraszewski equation, the Landau equation and the Lichtenecker equation) to obtain the dielectric properties of a mixture of rubber tire dust and rice husks (RTDRH) over the frequency range of 7 GHz to 13 GHz. Lichtenecker's equation for dielectrics proved to be a useful practical formulation for determining the effective permittivity of homogeneous dielectric mixtures. The effectiveness of these dielectric mixture equations in determining the effective permittivity of RTDRH was investigated in this study. A newly developed mixture equation was derived based on these dielectric mixture equations, and it and the existing equations were assessed to determine their effectiveness in determining dielectric properties of such mixtures.
Citation
Ee Meng Cheng, Mohd Fareq Bin Abd Malek, Manjur Ahmed, You Kok Yeow, Kim Yee Lee, and Hassan Nornikman, "The Use of Dielectric Mixture Equations to Analyze the Dielectric Properties of a Mixture of Rubber Tire Dust and Rice Husks in a Microwave Absorber," Progress In Electromagnetics Research, Vol. 129, 559-578, 2012.
doi:10.2528/PIER12050312
References

1. Asi, M. J. and N. I. Dib, "Design of multilayer microwave broadband absorbers using central force optimization," Progress In Electromagnetics Research B, Vol. 26, 101-103, 2010.
doi:10.2528/PIERB10090103

2. Zhu, B., C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Dual band switchable metamaterial electromagnetic absorber," Progress In Electromagnetics Research B, Vol. 24, 121-129, 2010.
doi:10.2528/PIERB10070802

3. Zivkovic, I. and A. Murk, "Characterization of magnetically loaded microwave absorbers," Progress In Electromagnetics Research B, Vol. 33, 277-289, 2011.
doi:10.2528/PIERB11071108

4. Gu, C., S. Qu, Z. Pei, H. Zhou, J. Wang, B.-Q. Lin, Z. Xu, P. Bai, and W.-D. Peng, "A wide-band, polarization-insensitive and wide-angle terahertz metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 17, 171-179, 2010.
doi:10.2528/PIERL10070105

5. Huang, H., F.-H. Xue, B. Lu, F. Wang, X.-L. Dong, and W.-J. Park, "Enhanced polarization in tadpole-shaped (NI, AL)/ALN nanoparticles and microwave absorption at high frequencies," Progress In Electromagnetics Research B, Vol. 34, 31-46, 2011.

6. Lee, H.-M. and H.-S. Lee, "A dual-band metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012.

7. Razavi, S. M. J., M. Khalaj-Amirhosseini, and A. Cheldavi, "Minimum usage of ferrite tiles in anechoic chambers," Progress In Electromagnetics Research B, Vol. 19, 367-383, 2010.
doi:10.2528/PIERB09122102

8. Malek, F. B. A., E. M. Cheng, O. Nadiah, H. Nornikman, M. Ahmed, M. Z. A. Abd Aziz, A. R. Osman, P. J. Soh, A. A. H. Azremi, A. Hasnain, and M. N. Taib, "Rubber tire dust-rice husk pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 117, 449-477, 2011.

9. Nornikman, H., B. H. Ahmad, M. Z. A. Abdul Aziz, F. B. A. Malek, H. Imran, and A. R. Othman, "Study and simulation of an edge couple split ring resonator (EC-SRR) on truncated pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 7, 319-334, 2012.
doi:10.2528/PIER12030601

10. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-387, 2011.

11. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

12. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual-bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

13. Faruque, M. R. I., M. T. Islam, and N. Misran, "Design analysis of new metamaterial for EM absorption reduction," Progress In Electromagnetics Research, Vol. 124, 119-135, 2012.
doi:10.2528/PIER11112301

14. Bucinskas, J., L. Nickelson, and V. Sugurovas, "Microwave scattering and absorption by a multilayered lossy metamaterial - Glass cylinder," Progress In Electromagnetics Research, Vol. 105, 103-118, 2010.
doi:10.2528/PIER10041711

15. Kraszewski, A., "Prediction of the dielectric properties of two-phase mixtures," J. Microwave Power, Vol. 12, No. 13, 215-22, 1977.

16. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, Vol. 8, 42-44, Pergamon Press, London, 1984.

17. Lichtenecker, K. and K. Rother, "Die herleitung des logarithmis-chen mischungs-gesetzes aus allegemeinen prinzipien der station-aren stromung," Physikalische Zeitschrift, Vol. 32, 255-260, 1931.

18. Liu, Y. H., J. M. Tang, and Z. H. Mao, "Analysis of bread dielectric properties using mixture equations," Journal of Food Engineering, Vol. 93, 72-79, 2009.
doi:10.1016/j.jfoodeng.2008.12.032

19. You, K. Y. and Z. Abbas, Open-ended Coaxial Sensor Handbook: Formulations, Microwave Measurements and Applications, LAP Lambert Academic Publishing, 2010.

20. Jusoh, M. A., Z. Abbas, J. Hassan, B. Z. Azmi, and A. F. Ahmad, "A simple procedure to determine complex permittivity of moist materials using standard commercial coaxial sensor," Measurement Science Review, Vol. 11, No. 1, 2011.
doi:10.2478/v10048-011-0003-4

21. Neelakantaswamy, P. S., K. F. Aspar, A. Rajaratnam, and N. P. Das, "A dielectric model of the human blood," Biomed. Tech., Vol. 28, No. 1-2, 18-22, 1983.
doi:10.1515/bmte.1983.28.1-2.18

22. Agilent Technologies Inc., , "Agilent basics of measuring the dielectric properties of materials,", 1-32, Santa Clara, California, United States of America, 2005.

23. Subedi, P. and I. Chatterjee, "Dielectric mixture model for asphalt-aggregate mixtures," Journal of Microwave Power and Electromagnetic Energy., Vol. 28, No. 2, 1993.

24. Nornikman, H., F. Malek, P. J. Soh, A. A. H. Azremi, F. H. Wee, and A. Hasnain, "Parametric studies of the pyramidal microwave absorber using rice husks," Progress In Electromagnetics Research, Vol. 104, 145-166, 2010.
doi:10.2528/PIER10041003

25. Nyfros, E. and P. Vainikainen, Industrial Microwave Sensors, Artech House, Inc., Norwood, MA, 1989.

26. Hsu, W. Y., W. G. Holtje, and J. R. Barkley, "Percolation phenomenon in polymer/carbon composites," Journal of Materials Science Letters, Vol. 7, 459-462, 1988.
doi:10.1007/BF01730688

27. Kwon, S. K., J. M. Ahn, G. H. Kim, C. H. Chun, J. H. Lee, and J. S. Hwang, "Microwave absorbing properties of carbon black/silicone rubber blend," Polymer Engineering Science, Vol. 42, No. 11, 2165-2171, 2002.
doi:10.1002/pen.11106

28. Achour, M. E., M. El Malhi, J. L. Miane, F.Carmona, and F. Lahjomri, "Microwave properties of carbon black-epoxy resin composites and their simulation by means of mixture laws," J. Appl. Polym. Sci., Vol. 73, No. 6, 969-973, 1999.
doi:10.1002/(SICI)1097-4628(19990808)73:6<969::AID-APP14>3.0.CO;2-1

29. Moon, K. S., H. D. Choi, A. K. Lee, K. Y. Cho, H. G. Yoon, and K. S. Suh, "Dielectric properties of epoxy-dielectrics-carbon black composite for phantom materials at radio frequencies," J. Appl. Polym. Sci., Vol. 77, No. 6, 1294-1302, 2000.
doi:10.1002/1097-4628(20000808)77:6<1294::AID-APP14>3.0.CO;2-E

30. Chung, D. D. L., "Electromagnetic interference shielding effectiveness of carbon materials," Carbon, Vol. 39, No. 2, 279-85, 2001.
doi:10.1016/S0008-6223(00)00184-6

31. Cao, M.-S., W.-L. Song, Z.-L. Hou, B. Wen, and J. Yuan, "The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites," Carbon, Vol. 48, 788-796, 2010.
doi:10.1016/j.carbon.2009.10.028

32. Nornikman, H., M. F. B. A. Malek, M. Ahmed, F. H. Wee, P. J. Soh, and A. A. H. Azremi, "Setup and results of pyramidal microwave absorbers using rice husks," Progress In Electromagnetics Research, Vol. 111, 141-161, 2011.
doi:10.2528/PIER10101203

33. Blackham, D. V. and R. D. Pollard, "An improved technique for permittivity measurements using a coaxial probe," IEEE Trans. on Instrum. Meas., Vol. 46, No. 5, 1093-1099, 1997.
doi:10.1109/19.676718