PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 129 > pp. 251-269

MULTIOBJECTIVE OPTIMIZATION AND DESIGN OF A LUNEBERG LENS ANTENNA WITH MULTIBAND MULTI-POLARIZED FEED-SYSTEM

By M. Huang, S. Yang, J. Teng, Q. Zhu, and Z.-P. Nie

Full Article PDF (568 KB)

Abstract:
A general multiobjective optimization and design procedure of a Luneberg lens antenna (LLA) with a compact multiband multi-polarized feed-system for a broadband satellite communication terminal is presented. The LLA utilizes a compact multiband feed horn, consisting of an inner dielectric loaded circular horn for the K/Ka-band (dual-circular polarization) and a coaxial waveguide with axially corrugated flange for the Ku-band (dual-linear polarization). Measurements show good agreement with simulations. Moreover, an efficient multiobjective evolutionary algorithm based on decomposition (MOEA/D) with differential evolution operator and objective normalization technique is firstly coupled with the vector spherical wave function expansions (VSWE) for the optimal design of a 7-layer 650 mm diameter LLA, which provides higher aperture efficiency at Ku/K/Ka-band simultaneously. The frequency dependence of the LLA is also investigated. Finally, the gain and sidelobe level of a 5-layer design are jointly evaluated and compared with previous works. The proposed design procedure provides much better radiation performances and greater design freedom to the designers, as a group of Pareto-optimal LLA solutions can be obtained with just one simulation.

Citation:
M. Huang, S. Yang, J. Teng, Q. Zhu, and Z.-P. Nie, "Multiobjective Optimization and Design of a Luneberg Lens Antenna with Multiband Multi-Polarized Feed-System," Progress In Electromagnetics Research, Vol. 129, 251-269, 2012.
doi:10.2528/PIER12051006
http://www.jpier.org/PIER/pier.php?paper=12051006

References:
1. Granet, C., G. L. James, R. Bolton, and G. Moorey, "A smooth-walled spline-profile horn as an alternative to the corrugated horn for wide band millimeter-wave applications," IEEE Trans. Antennas Propag., Vol. 52, No. 3, 848-854, Mar. 2004.
doi:10.1109/TAP.2004.825156

2. Yin, X. H. and S. C. Shi, "A simple design method of multimode horns," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 455-459, Jan. 2005.
doi:10.1109/TAP.2004.838748

3. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-effciency wide-band multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
doi:10.2528/PIER08061806

4. Carpenter, E., "A dual-band corrugated feed horn," Proc. IEEE AP-S Int. Symp. Dig., Vol. 18, 213-216, Jun. 1980.

5. Kishk, A. A. and C. S. Lim, "Comparative analysis between conical and Gaussian profiled horn antennas," Progress In Electromagnetics Research, Vol. 38, 147-166, 2002.
doi:10.2528/PIER02052406

6. Lucci, L., R. Nesti, G. Pelosi, and S. Selleri, "Phase centre optimization in profiled corrugated circular horns with parallel genetic algorithms," Progress In Electromagnetics Research, Vol. 16, 127-142, 2004.
doi:10.2528/PIER03090501

7. Clark, P. R. and G. L. James, "Ultra-wideband hybrid-mode feeds," Electron. Lett., Vol. 31, No. 23, 1968-1969, 1995.
doi:10.1049/el:19951364

8. Chung, J. Y., "Ultra-wideband dielectric-loaded horn antenna with dual-linear polarization capability," Progress In Electromagnetics Research, Vol. 102, 397-411, 2010.
doi:10.2528/PIER10022703

9. Xu, O., "Diagonal horn Gaussian effciency enhancement by dielectric loading for submillimeter wave application at 150 GHz," Progress In Electromagnetics Research, Vol. 114, 177-194, 2011.

10. Rolland, A., A. V. Boriskin, C. Person, C. Quendo, L. L. Coq, and R. Sauleau, "Lens-corrected axis-symmetrical shaped horn antenna in metallized foam with improved bandwidth," IEEE Antennas Wireless Propag. Lett., Vol. 11, 57-60, 2012.
doi:10.1109/LAWP.2011.2182596

11. Stephen, D. T., "A multiband antenna for satellite communications on the move," IEEE Trans. Antennas Propag., Vol. 54, No. 10, 2862-2868, Oct. 2006.

12. Teng, J., S. Yang, and Z. Nie, "Study on multiple frequencies and polarizations feed technique in luneberg lens antenna," Intelligent Signal Processing and Communication Systems (ISPACS) Int. Symp. Dig., Chengdu, Dec. 2010.

13. Bhattacharyya, A., R. Eliassi, C. Hansen, and P. Metzen, "Multiband feed using coaxial configuration," Int. J. RF Microw. C. E., Vol. 21, No. 2, 127-136, 2011.
doi:10.1002/mmce.20489

14. Tai, C. T., "The electromagnetic theory of the spherical luneberg lens," Appl. Sci. Res., Section B, Vol. 7, 113-130, 1958.
doi:10.1007/BF02921903

15. Sanford, J. R., "Scattering by spherically stratified microwave lens antennas," IEEE Trans. Antennas Propag., Vol. 42, No. 5, 690-698, May 1994.
doi:10.1109/8.299568

16. Mosallaei, H. and Y. Rahmat-Samii, "Non-uniform Lüneburg and two-shell lens antennas: Radiation characteristics and design optimization," IEEE Trans. Antennas Propag., Vol. 49, No. 1, 60-69, Jan. 2001.
doi:10.1109/8.910531

17. Fuchs, B., R. Golubovic, A. K. Skrivervik, and J. R. Mosig, "Spherical lens antenna designs with particle swarm optimization," Microw. Opt. Techn. Lett., Vol. 52, No. 7, 1655-1659, Jul. 2010.
doi:10.1002/mop.25278

18. Zhong, M., S. Yang, and Z. Nie, "Optimization of a luneberg lens antenna using the differential evolution algorithm," Proc. IEEE AP-S Int Symp. Dig., San Diego, CA, Jul. 2008.

19. Huang, M., S. Yang, W. Xiong, and Z. Nie, "Design and optimization of spherical lens antennas including practical feed models," Progress In Electromagnetics Research, Vol. 120, 355-370, 2011.

20. Fuchs, B., L. Le Coq, O. Lafond, S. Rondineau, and M. Himdi, "Design optimization of multishell Luneberg lenses," IEEE Trans. Antennas Propag., Vol. 55, No. 2, 283-289, Feb. 2007.
doi:10.1109/TAP.2006.889849

21. Fuchs, B., S. Palud, L. Le Coq, O. Lafond, M. Himdi, and S. Rondineau, "Scattering of spherically and hemispherically stratified lenses fed by any real source," IEEE Trans. Antennas Propag., Vol. 56, No. 2, 450-460, Feb. 2008.
doi:10.1109/TAP.2007.915458

22. Boriskin, A. V., A. Vorobyov, and R. Sauleau, "Two-shell radially symmetric dielectric lenses as low-cost analogs of the Lüneburg lens," IEEE Trans. Antennas Propag., Vol. 59, No. 8, 3089-3093, Aug. 2011.
doi:10.1109/TAP.2011.2158793

23. Nikolic, N., J. S. Kot, and S. S. Vinogradov, "Scattering by a Lüneburg lens partially covered by a metallic cap," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 4, 549-563, 2007.
doi:10.1163/156939307780616856

24. Vinogradov, S. S., P. D. Smith, J. S. Kot, and N. Nikolic, "Radar cross-section studies of spherical lens reflectors," Progress In Electromagnetics Research, Vol. 72, 325-337, 2007.
doi:10.2528/PIER07031206

25. Maruyama, T., K. Yamamori, and Y. Kuwahara, "Design of multibeam dielectric lens antennas by multiobjective optimization," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 57-63, 2009.
doi:10.1109/TAP.2008.2009694

26. Carpenter, M. P., et al., "Lens of gradient dielectric constant and methods of production,", US Patent 6433936 B1, 2001.

27. Rondineau, S., M. Himdi, and J. Sorieux, "A sliced spherical Lüneburg lens," IEEE Antennas Wireless Propag. Lett., Vol. 2, 163-166, 2003.
doi:10.1109/LAWP.2003.819045

28. Wang, G., Y. Gong, and H. Wang, "On the size of left-handed material lens for near-field target detection by focus scanning," Progress In Electromagnetics Research, Vol. 87, 345-361, 2008.
doi:10.2528/PIER08101902

29. Andrés-García, B. and L. E. García-Muñoz, "Filtering lens structure based on SRRs in the low THz band," Progress In Electromagnetics Research, Vol. 93, 71-90, 2009.
doi:10.2528/PIER09040105

30. Ma, H. F., X. Chen, H. S. Xu, X. M. Yang, W. X. Jiang, and T.-J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Appl. Phys. Lett., Vol. 95, 094107, 2009.

31. Ma, H. F., X. Chen, X. M. Yang, W. X. Jiang, and T.-J. Cui, "Design of multibeam scanning antennas with high gains and low sidelobes using gradient-index metamaterials," J. Appl. Phys., Vol. 107, 014902, 2010.

32. Dou, W. B., Z. L. Sun, and X. Q. Tan, "Fields in the focal space of symmetrical hyperbolic focusing lens," Progress In Electromagnetics Research, Vol. 20, 213-226, 1998.
doi:10.2528/PIER98021300

33. Zhang, Z. and W. Dou, "Binary diffractive small lens array for Thz imaging system," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 177-187, 2011.
doi:10.1163/156939311794362821

34. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shooredeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
doi:10.2528/PIER07101702

35. Lee, Y. H., B. J. Cahill, S. J. Porter, and A. C. Marvin, "A novel evolutionary learning technique for multi-objective array antenna optimization," Progress In Electromagnetics Research, Vol. 48, 125-144, 2004.
doi:10.2528/PIER04012202

36. Zhang, Q. and H. Li, "MOEA/D: A multiobjective evolutionary algorithm based on decomposition," IEEE Trans. Evol. Comput., Vol. 11, No. 6, 712-731, Dec. 2007.
doi:10.1109/TEVC.2007.892759

37. Pal, S., S. Das, and A. Basak, "Design of time-modulated linear arrays with a multi-objective optimization approach," Progress In Electromagnetics Research B, Vol. 23, 83-107, 2010.
doi:10.2528/PIERB10052401

38. Chen, Y., S. Yang, and Z. Nie, "Improving conflicting specifications of time-modulated antenna arrays by using a multiobjective evolutionary algorithm," Int. J. Numer. Model. El., Jul. 2011.

39. Goudos, S. K., K. Siakavara, E. E. Vafiadis, and J. N. Sahalos, "Pareto optimal Yagi-Uda antenna design using multi-objective differential evolution," Progress In Electromagnetics Research, Vol. 105, 231-251, 2010.
doi:10.2528/PIER10052302


© Copyright 2014 EMW Publishing. All Rights Reserved