PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 130 > pp. 105-130

POLARIMETRIC SAR TOMOGRAPHY USING l2,1 MIXED NORM SPARSE RECONSTRUCTION METHOD

By S. Xing, D. Dai, Y. Li, and X. Wang

Full Article PDF (512 KB)

Abstract:
The growing interest of Radar community in retrieving the 3D reflectivity map makes both polarimetric SAR interferometry and SAR tomography hot topics in recent years. It is expected that combining these two techniques would provide much better discriminating ability for scatterers lying in the same pixel. Generally, this is about reconstruction of scattering profiles from limited and irregular polarimetric measurements. As an emerging technique, Compressive Sensing (CS) provides a powerful tool to achieve the purpose. In this paper, we propose a l2,1 mixed norm sparse reconstruction method for jointly processing multibaseline PolInSAR data based on multiple measurement vector compressive sensing (MMV-CS) model, and also address the signal leakage problem with MMV-CS inversion by presenting a window based iterative algorithm. The results obtained by processing simulated data show that the proposed method possesses superior performance advantage over existing methods.

Citation:
S. Xing, D. Dai, Y. Li, and X. Wang, "Polarimetric SAR Tomography Using L2,1 Mixed Norm Sparse Reconstruction Method," Progress In Electromagnetics Research, Vol. 130, 105-130, 2012.
doi:10.2528/PIER12051408
http://www.jpier.org/PIER/pier.php?paper=12051408

References:
1. Lazaro, A., D. Girbau, and R. Villarino, "Simulated and experimental investigation of microwave imaging using UWB," Progress In Electromagnetics Research, Vol. 94, 263-280, 2009.
doi:10.2528/PIER09061004

2. Guo, D., H. Xu, and J. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.

3. Zhang, M., Y. W. Zhao, H. Chen, and W.-Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.
doi:10.2528/PIER11071501

4. Cumming, I. G. and F. K. Wong, "Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementation," Artech House, 2005.

5. Zandoná Schneider, R., K. P. Papathanassiou, I. Hajnsek, and A. Moreira, "Polarimetric and interferometric characterization of coherent scatterers in urban areas," IEEE Trans. Geosci. Remote Sens., Vol. 44, 971-984, 2006.
doi:10.1109/TGRS.2005.860950

6. Wu, B.-I., M. C. Yeuing, Y. Hara, and J. A. Kong, "InSAR height inversion by using 3-D phase projection with multiple baselines," Progress In Electromagnetics Research, Vol. 91, 173-193, 2009.
doi:10.2528/PIER09020902

7. Hanssen, R., Radar Interferometry: Data Interpretation and Error Analysis , Kluwer Academic, Dordrecht, the Netherlands, 2001.

8. Liu, Q., S. Xing, X. Wang, J. Dong, D. Dai, and Y. Li, "The slope effect of coherent transponder in InSAR," Progress In Electromagnetics Research, Vol. 127, 351-370, 2012.
doi:10.2528/PIER12022111

9. Liu, Q., S. Xing, X. Wang, J. Dong, D. Dai, and Y. Li, "The interferometry phase of InSAR coherent jamming with arbitrary waveform modulation," Progress In Electromagnetics Research, Vol. 124, 101-118, 2012.
doi:10.2528/PIER11111601

10. Krieger, G., et al., "Interferometric synthetic aperture radar (SAR) missions employing formation flying," Proceeding of IEEE, Vol. 98, 816-843, 2010.
doi:10.1109/JPROC.2009.2038948

11. Felguera-Martín, D., J.-T. González-Partida, P. Almorox-González, M. Burgos-García, and B.-P. Dorta-Naranjo, "Inter-ferometric inverse synthetic aperture radar experiment using an interferometric linear frequency modulated continuous wave millimeter-wave radar," IET Radar Sonar Navig., Vol. 5, 39-47, 2011.
doi:10.1049/iet-rsn.2009.0111

12. Cloude, S. R., "Polarization coherence tomography," Radio Sci., Vol. 41, 4017, 2006.
doi:10.1029/2005RS003436

13. Reigber, A. and A. Moreira, "First demonstration of airborne SAR tomography using multibaseline L-band data," IEEE Trans. Geosci. Remote Sens., Vol. 38, 2142-2152, 2000.
doi:10.1109/36.868873

14. Fornaro, G., D. Reale, and F. Serafino, "Four-dimensional SAR imaging for height estimation and monitoring of single and double scatterers," IEEE Trans. Geosci. Remote Sens., Vol. 47, 224-237, 2009.
doi:10.1109/TGRS.2008.2000837

15. Zhu, X. and R. Bamler, "Very high resolution spaceborne SAR tomography in urban environment," IEEE Trans. Geosci. Remote Sens., Vol. 48, 4296-4307, 2010.
doi:10.1109/TGRS.2010.2050487

16. Zhu, X. and R. Bamler, "Tomographic SAR inversion by L1-norm regularization --- The compressive sensing approach," IEEE Trans. Geosci. Remote Sens., Vol. 48, 3939-3846, 2010.

17. Budillon, A., A. Evangelista, and G. Schirinzi, "Three-dimensional SAR focusing from multipass signal using compressive sampling ," IEEE Trans. Geosci. Remote Sens., Vol. 49, 488-499, 2011.
doi:10.1109/TGRS.2010.2054099

18. Sauer, S., L. Ferro-Famil, A. Reigber, and E. Pottier, "Three-dimensional imaging and scattering mechanism estimation over urban scenes using dual-baseline polarimetric InSAR observations at L-band ," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 11, 4616-4629, Nov. 2011.
doi:10.1109/TGRS.2011.2147321

19. Nannini, M., R. Scheiber, R. Horn, and A. Moreira, "First 3-D reconstructions of targets hidden beneath foliage by means of polarimetric SAR tomography ," IEEE Geosci. Remote Sens. Letters, Vol. 9, No. 1, 60-64, 2012.
doi:10.1109/LGRS.2011.2160329

20. Austin, C. D., E. Ertin, and R. L. Moses, "Sparse signal methods for 3-D radar imaging," IEEE J. Sel. Topics in Signal Process., Vol. 5, 408-423, 2011.
doi:10.1109/JSTSP.2010.2090128

21. Frey, O. and E. Meier, "Analyzing tomographic SAR data of a forest with respect to frequency, polarization, and focusing technique ," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 10, 3648-3659, 2011.
doi:10.1109/TGRS.2011.2125972

22. Tebaldini, S., "Algebraic synthesis of forest scenarios from multibaseline PolInSAR data," IEEE Trans. Geosci. Remote Sens., Vol. 47, 4132-4142, 2009.
doi:10.1109/TGRS.2009.2023785

23. Zhu, X. and R. Bamler, "Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 1, Jan. 2012.
doi:10.1109/TGRS.2011.2160183

24. Chi, Y., L. L. Scharf, A. Pezeshki, and A. R. Calderbank, "Sensitivity to basis mismatch in compressed sensing," IEEE Trans. Signal Process., Vol. 59, 2182-2195, 2011.
doi:10.1109/TSP.2011.2112650

25. Herman, M. A. and T. Strohmer, "General deviants: An analysis of perturbations in compressed sensing," IEEE J. Sel. Topics in Signal Process.: Special Issue on Compressive Sens., Vol. 4, 342-349, 2010.
doi:10.1109/JSTSP.2009.2039170

26. Herman, M. A. and D. Needell, "Mixed operators in compressed sensing," Proc. 44th Ann. Conf. Inf. Sci. Syst. (CISS), Princeton, NJ, 2010.

27. Aguilera, E., M. Nannini, and A. Reigber, "Multi-signal compressed sensing for polarimetric SAR tomography," IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1369-1372, 2011.

28. Donoho, D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

29. Candés, E. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag., Vol. 25, 21-30, 2008.
doi:10.1109/MSP.2007.914731

30. Cotter, S. F., D. Rao, K. Engan, and K. Kreutz-Delgado, "Sparse solutions to linear inverse problems with multiple measurement vectors," IEEE Trans. Signal Process., Vol. 53, 2477-2488, 2005.
doi:10.1109/TSP.2005.849172

31. Chen, S., D. Donoho, and M. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Sci. Comput., Vol. 20, 33-61, 1998.
doi:10.1137/S1064827596304010

32. Tropp, J. A. and S. J.Wright, "Computational methods for sparse solution of linear inverse problem," Proceeding of IEEE, Vol. 98, 948-958, 2010.
doi:10.1109/JPROC.2010.2044010

33. Tropp, J. A., A. C. Gilbert, and M. J. Strauss, "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit," Signal Processing (Special Issue on Sparse Approximations in Signal and Image Processing), Vol. 86, 572-588, 2006.

34. Li, J. and P. Stoica, "Efficient mixed-spectrum estimation with applications to target feature extraction," IEEE Trans. Signal Process., Vol. 44, 281-295, 1996.

35. Chen, J. and X. Huo, "Theoretical results on sparse representations of multiple-measurement vectors," IEEE Trans. Signal Process, Vol. 54, 4634-4643, 2006.
doi:10.1109/TSP.2006.881263

36. Malioutov, D. M., M. Cetin, and A. S. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Trans. Signal Process., Vol. 53, 3010-3022, 2005.
doi:10.1109/TSP.2005.850882

37. Tropp, J. A., "Algorithms for simultaneous sparse approximation. Part II: Convex relaxation ," Signal Process. (Special Issue on Sparse Approximations in Signal and Image Processing), Vol. 86, 589-602, 2006.

38. Negahban, S. N. and M. J. Wainwright, "Simultaneous support recovery in high dimensions: Benefits and perils of block," IEEE Trans. Inf. Theory, Vol. 57, 3841-3863, 2011.
doi:10.1109/TIT.2011.2144150

39. Candès, E., "Compressive sampling," Proc. Int. Congr. Math., Vol. 3, 1433-1452, Madrid, Spain, 2006.

40. Nannini, M., R. Scheiber, and A. Moreira, "Estimation of the minimum number of tracks for SAR tomography," IEEE Trans. Geosci. Remote Sens., Vol. 47, 531-543, 2009.
doi:10.1109/TGRS.2008.2007846


© Copyright 2014 EMW Publishing. All Rights Reserved