Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 131 > pp. 169-184


By P. K. Choudhury

Full Article PDF (223 KB)

The paper presents an analytical investigation of three-layer twisted clad liquid crystal fiber in respect of its power propagation characteristics. The fiber under consideration has dielectric non-magnetic materials in its core and inner clad sections, whereas the outermost clad is made of radially anisotropic liquid crystal material. Twist in the fiber is introduced in the form of superfine helical turns at the interface of the core and the inner clad regions with specified values of pitch angle. Results demonstrate large confinement of optical power in the outermost liquid crystal section. Further, the angle of twist is seen to have its pronounced effect on controlling the flow of power as it exhibits the ability of governing the propagation characteristics of the medium. The observed propagation feature is attributed to the radial anisotropy of the liquid crystal outer region as well as the amount of twist introduced, and attracts useful applications of such complex fiber structures in evanescent field optical sensing and other coupling devices primarily used in integrated optics.

P. K. Choudhury, "Transmission through Twisted Clad Liquid Crystal Optical Fibers," Progress In Electromagnetics Research, Vol. 131, 169-184, 2012.

1. Wu, S.-T. and U. Efron, "Optical properties of thin nematic liquid crystal cells," Appl. Phys. Lett., Vol. 48, 624-636, 1986.

2. Winter, C. S., J. D. Rush, and D. G. Smith, "Liquid crystal materials' refractive index matched to silica," Liq. Cryst., Vol. 2, 561-564, 1987.

3. Sage, I. and D. Chaplin, "Low RI liquid crystals for integrated optics," Electron. Lett., Vol. 23, 1192-1193, 1987.

4. Green, M. and S. J. Madden, "Low loss nematic liquid crystal cored fiber waveguides," Appl. Opt., Vol. 28, 5202-5203, 1989.

5. Lin, H., P. P. Muhoray, and M. A. Lee, "Liquid crystalline cores for optical fibers," Mol. Cryst. Liq. Cryst., Vol. 204, 189-200, 1991.

6. Goldburt, E. S. and P. S. J. Russell, "Electro-optical response of a liquid-crystalline fiber coupler," Appl. Phys. Lett., Vol. 48, 10-12, 1986.

7. Veilleux, C., J. Lapierre, and J. Bures, "Liquid-crystal-clad tapered fibers," Opt. Lett., Vol. 11, 733-735, 1986.

8. Chen, S.-H. and T. J. Chen, "Observation of mode selection in a radially anisotropic cylindrical waveguide with liquid-crystal cladding," Appl. Phys. Lett., Vol. 64, 1893-1895, 1994.

9. Busurin, V. I., M. Green, J. R. Cozens, and K. D. Leaver, "Switchable coaxial optical coupler using a liquid crystal mixture," Appl. Phys. Lett., Vol. 42, 322-324, 1983.

10. Liu, K., W. V. Sorin, and H. J. Shaw, "Single-mode-fiber evanescent polarizer/amplitude modulator using liquid crystals," Opt. Lett., Vol. 11, 180-182, 1986.

11. El-Sherif, M. A., P. M. Shankar, P. R. Herczfeld, L. Bobb, and H. Krumboltz, "On-fiber electrooptic modulator/switch," Appl. Opt., Vol. 25, 2469-2470, 1986.

12. Kashyap, R., C. S. Winter, and B. K. Nayar, "Polarization desensitized liquid-crystal overlay optical-fiber modulator," Opt. Lett., Vol. 13, 401-403, 1988.

13. Ioannidis, Z. K., I. P. Giles, and C. Bowry, "All-fiber optic intensity modulators using liquid crystals," Appl. Opt., Vol. 30, 328-333, 1991.

14. Yoshino, T., Y. Takahashi, H. Tamura, and N. Ohde, "Some special fibers for distributed sensing of uv light, electric field or strain," Proc. SPIE, Vol. 2071, 242-254, 1993.

15. Pierce, J. R., Travelling Wave Tubes, D. Van Nostrand, NJ, 1950.

16. Kumar, D., O. N. Singh, and II, "Modal characteristic equation and dispersion curves for an elliptical step-index fiber with a conducting helical winding on the core-cladding boundary --- An analytical study," J. Light. Tech., Vol. 20, 1416-1424, 2002.

17. Kumar, D., P. K. Choudhury, and F. A. Rahman, "Towards the characteristic dispersion relation for step-index hyperbolic waveguide with conducting helical winding," Progress In Electromagnetics Research, Vol. 71, 251-275, 2007.

18. Kumar, D., P. K. Choudhury, O. N. Singh, and II, "Towards the dispersion relations for dielectric optical fibers with helical windings under slow- and fast-wave considerations --- A comparative analysis," Progress In Electromagnetics Research, Vol. 80, 409-420, 2008.

19. Siong, C. C. and P. K. Choudhury, "Propagation characteristics of tapered core helical clad dielectric optical fibers," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5, 663-674, 2009.

20. Safle, A. H. B. M. and P. K. Choudhury, "On the field patterns of helical clad dielectric optical fibers," Progress In Electromagnetics Research, Vol. 91, 69-84, 2009.

21. Lim, K. Y., P. K. Choudhury, and Z. Yusoff, "Chirofibers with helical windings --- An analytical investigation," Optik, Vol. 121, 980-987, 2010.

22. Choudhury, P. K. and D. Kumar, "On the slow-wave helical clad elliptical fibers," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14--15, 1931-1942, 2010.

23. Snyder, A. W. and F. Rühl, "Single-mode, single-polarization fibers made of birefringent material," J. Opt. Soc. Am., Vol. 73, 1165-1174, 1983.

24. Chen, Y., "Anisotropic fiber with cylindrical polar axes," Appl. Phys. B, Vol. 42, 1-3, 1987.

25. Watkins, D. A., Topics in Electromagnetic Theory, Wiley, USA, 1958.

26. Cherin, A. H., An Introduction to Optical Fibers, Chapter 5, McGraw-Hill, New York, 1987.

27. Choudhury, P. K. and R. A. Lessard, "An estimation of power transmission through a doubly clad optical fiber with annular core," Microw. and Opt. Technol. Lett., Vol. 29, 402-405, 2001.

28. Choudhury, P. K. and T. Yoshino, "A rigorous analysis of the power distribution in plastic clad annular core optical fibers," Optik, Vol. 113, 481-488, 2002.

29. Nair, A. and P. K. Choudhury, "On the analysis of field patterns in chirofibers," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2277-2286, 2007.

30. Tuz, V. R. and C.-W. Qiu, "Semi-infinite chiral nihility photonics: Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-152, 2010.

31. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a chiral-coated nihility cylinder," Progress In Electromagnetics Research Letters, Vol. 18, 41-50, 2010.

32. Naqvi, A., S. Ahmed, and Q. A. Naqvi, "Perfect electromagnetic conductor and fractional dual interface placed in a chiral nihility medium," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14--15, 1991-1999, 2010.

33. Naqvi, A., A. Hussain, and Q. A. Naqvi, "Waves in fractional dual planar waveguides containing chiral nihility metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11--12, 1575-1586, 2010.

34. Wu, Z., B. Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.

35. Topa, A. L., C. R. Paiva, and A. M. Barbosa, "Electromagnetic wave propagation in chiral H-guides," Progress In Electromagnetics Research, Vol. 103, 285-303, 2010.

36. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research, Vol. 116, 409-423, 2011.

37. Li, J., F.-Q. Yang, and J. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

38. Dong, J., J. Li, and F.-Q. Yang, "Guided modes in the four-layer slab waveguide containing chiral nihility core," Progress In Electromagnetics Research, Vol. 112, 241-255, 2011.

39. Baqir, M. A., A. A. Syed, and Q. A. Naqvi, "Electromagnetic fields in a circular waveguide of chiral nihility metamaterial," Progress In Electromagnetics Research M, Vol. 16, 85-93, 2011.

40. Dong, J. and J. Li, "Characteristics of guided modes in uniaxial chiral circular waveguide," Progress In Electromagnetics Research, Vol. 124, 331-345, 2012.

© Copyright 2014 EMW Publishing. All Rights Reserved