PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 133 > pp. 137-157

A POLE AND AMC POINT MATCHING METHOD FOR THE SYNTHESIS OF HSF-UC-EBG STRUCTURE WITH SIMULTANEOUS AMC AND EBG PROPERTIES

By L. Zhao, D. Yang, H. Tian, Y. Ji, and K. Xu

Full Article PDF (550 KB)

Abstract:
The relationship between the reflection phase curve and the dispersion curve of a H-shaped slot fractal uniplanar compact electromagnetic bandgap (HSF-UC-EBG) structure is investigated in this paper. It is demonstrated numerically and theoretically that the pole (located at phi = 180 degrees) of the reflection phase curve is related to the EBG location of the dispersion curve. More specifically, the pole is always located in the bandgap and the frequency shift characteristics of the pole and the EBG location are the same. Therefore, locations of the artificial magnetic conductor (AMC) and EBG can match with the AMC point and the pole, respectively. By realizing and making appropriate use of this, we can tailor the AMC and EBG locations to coincide in the frequency region only by reducing the spectral distance (d) between the AMC point and the pole. This method can improve the computational efficiency significantly. Parametric studies have been performed to obtain guidelines for reducing d. Finally, an example to design HSF-UC-EBG structure with simultaneous AMC and EBG properties by using this technique is presented with detail steps.

Citation:
L. Zhao, D. Yang, H. Tian, Y. Ji, and K. Xu, "A Pole and AMC Point Matching Method for the Synthesis of Hsf-UC-EBG Structure with Simultaneous AMC and EBG Properties," Progress In Electromagnetics Research, Vol. 133, 137-157, 2013.
doi:10.2528/PIER12062406
http://www.jpier.org/PIER/pier.php?paper=12062406

References:
1. Coccioli, R., F. R. Yang, K. P. Ma, and T. Itoh, "Aperture-coupled patch antenna on UC-PBG substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2123-2130, 1999.
doi:10.1109/22.798008

2. Gnanagurunathan, G. and K. T. Selvan, "Gain enhancement of microstrip patch antenna by using complementary EBG geometries ," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 329-341, 2012.
doi:10.1163/156939312800030938

3. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Bandwidth enhancement of the probe fed microstrip antenna using frequency selective surface as electromagnetic bandgap superstrate," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801

4. Yang, F., V. Demir, D. A. Elsherbeni, and A. Z. Elsherbeni, "Enhancement of dipole antennas characteristics using SEMI-EBG ground plane ," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 993-1006, 2006.
doi:10.1163/156939306776930330

5. Lamminen, Lamminen, A. E. I., A. R. Vimpari, and J. Säily, "UC-EBG on LTCC for 60-GHz frequency band antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 2904-2912, 2009.
doi:10.1109/TAP.2009.2029311

6. Nashaat, D., H. A. Elsadek, E. A. Abdallah, M. F. Iskander, and H. M. E. Hennawy, "Ultrawide bandwidth 2 × 2 microstrip patch array antenna using electromagnetic band-gap structure (EBG)," IEEE Transactions on Antenna and Propagation, Vol. 59, No. 5, 1528-1534, 2011.
doi:10.1109/TAP.2011.2123052

7. Xie, H. H., Y. C. Jiao, L. N. Chen, and F. S. Zhang, "An effective analysis method for EBG reducing patch antenna coupling," Progress In Electromagnetics Research Letters, Vol. 21, 187-193, 2011.

8. Kim, S. H., T. T. Nguyen, and J. H. Jang, "Reflection characteristics of 1-D EBG ground plane and its application to a planar dipole antenna ," Progress In Electromagnetics Research, Vol. 120, 51-66, 2011.

9. Gujral, M., J. L. W. Li, T. Yuan, and C. W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807

10. Huang, S. Y. and Y. H. Lee, "Compact U-shaped dual planar EBG microstrip low-pass filter," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 12, 3799-3805, 2005.
doi:10.1109/TMTT.2005.859865

11. Chu, H., X. Q. Shi, and Y. X. Guo, "Utra-wideband bandpass filter with a notch band using EBG array etched ground," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 203-209, 2012.
doi:10.1163/156939311794362786

12. Moghadasi, S. M., A. R. Attari, and M. M. Mirsalehi, "Compact and wideband 1-D mushroom-like EBG filters," Progress In Electromagnetics Research, Vol. 83, 323-333, 2008.
doi:10.2528/PIER08050101

13. Shahparnia, S. and O. M. Ramahi, "Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures," IEEE Transactions on Electromagnetic Compatibility, Vol. 46, No. 4, 2004.
doi:10.1109/TEMC.2004.837671

14. Ran, F., K. P. Ma, Y. Qin, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 8, 1999.

15. Wu, T. L. and T. K. Wang, "Embedded power plane with ultra-wide stop-band for simultaneously switching noise on high-speed circuits ," Electronic Letter, Vol. 42, No. 4, 213-241, 2006.
doi:10.1049/el:20063498

16. Hung, K. C., D. B. Lin, C. S. Chang, C. T. Wu, and I. T. Tang, "Novel fractal electromagnetic bandgap structures to suppress simultaneous switching noise in high speed circuits," PIERS Proceedings, Cambridge, USA, Jul. 2-6, 2008.

17. Ran, F., K. P. Ma, Y. Qin, and T. Itoh, "A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2092-2098, 1999.
doi:10.1109/22.798004

18. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band ," IEEE Transactions on Microwave Theory, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

19. Goussetis, G., A. P. Feresidis, and J. C. Vardaxoglou, "Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on trounded dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 2006.
doi:10.1109/TAP.2005.861575

20. Kovács, P., Z. Raida, and M. M. Vázquez, "Parametric study of mushroom-like and planar periodic structures in terms of simultaneous AMC and EBG properties," Radioengineering, Vol. 17, No. 4, 19-24, 2008.

21. Christopoulos, N., G. Goussetis, A. P. Feresidis, and J. C. Vardaxoglou, "Metamaterials with multiband AMC And EBG properties," Proceedings of European Microwave Week 2005, Paris, France, Oct. 2005.

22. Hou, B., H. Xie, W. Wen, and P. Sheng, "Three-dimensional metallic fractals and their photonic crystal characteristics," Physical Review B, Vol. 77, No. 12, 125113(1-8), 2008.
doi:10.1103/PhysRevB.77.125113

23. Tchikaya, E. B., F. Khalil, F. A. Tahir, and H. Aubert, "Multi-scale approach for the electromagnetic simulation of finite size and thick frequency selective surfaces," Progress In Electromagnetics Research M, Vol. 17, 43-57, 2011.

24. Chiu, N., Y. C. Chang, H. C. Hsieh, and C. H. Chen, "Suppression of spurious emissions from a spiral inductor through the use of a frequency-selective surface," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 1, 56-63, 2010.
doi:10.1109/TEMC.2009.2034841

25. Cos, M. E., F. L. Heras, and M. Franco, "Design of planar artificial magnetic conductor ground plane using frequency-selective surfaces for frequencies below 1 GHz," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 951-954, 2009.
doi:10.1109/LAWP.2009.2029133

26. Maci, S., M. Caiazzo, A. Cucini, and M. Casaletti, "A pole-zero matching method for EBG surfaces composed of dipole FSS printed on a grounded dielectric slab," IEEE Transactions on Antenna and Propagation, Vol. 53, No. 1, 70-80, 2005.
doi:10.1109/TAP.2004.840520

27. Kim, J. H. and M. Swaminathan, "Modeling of irregular shaped power distribution planes using transmission matrix method," IEEE Transactions on Advanced Packaging, Vol. 54, No. 3, 334-346, 2001.

28. Kim, S. G., H. Kim, H. D. Kang, and J. G. Yook, "Modeling and analysis of a conventional and localized electromagnetic bandgap structures for suppression of simultaneous switching noise," Microwave and Optical Technology Letters, Vol. 54, No. 7, 1571-1577, 2012.
doi:10.1002/mop.26910


© Copyright 2014 EMW Publishing. All Rights Reserved