Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 131 > pp. 275-292


By B. Liu and W. Chang

Full Article PDF (301 KB)

This paper presents a novel range-spread target detection algorithm for frequency stepped chirp radar (FSCR) which transmits a chirp-pulse train with frequency stepped carriers. FSCR achieves high range resolution by synthetic wide-band technique, and its process includes intra-pulse matched filtering and pulse-to-pulse inverse discrete Fourier transform (IDFT) or wavelet transform. For FSCR, the high resolution range profile (HRRP) of a target is obtained by target extraction from overlapping HRRPs which is caused by oversampling. During the target extraction (sometimes called de-correlation), some strong scattering points of target echo are discarded, as the result, the signal-to-clutter ratio (SCR) might be reduced and the target detection capability is degraded. To solve this problem for FSCR, a novel detection algorithm without target extraction is addressed. The new algorithm based on the power spectrum of radar echo uses not only the amplitude information, but also the phase information of overlapping HRRPs of a target to improve the SCR, therefore, has significant performance. Moreover, the test statistic and the false alarm probability of the detector are derived, and the implementation procedure and the flow chart of the detection algorithm are designed. Finally, the detection performance is assessed by Monte-Carlo simulation, and the results indicate that the proposed algorithm has about 3 dB detection improvement in SCR compared with the spatial scattering density generalized likelihood ratio test (SSD-GRLT) detector, and at the same condition, is superior to the integrator detector. In addition, the proposed algorithm is robust and easy to implement.

B. Liu and W. Chang, "A Novel Range-Spread Target Detection Approach for Frequency Stepped Chirp Radar," Progress In Electromagnetics Research, Vol. 131, 275-292, 2012.

1. Barton, , D. K. , S. A. Leonov, and , Radar Technology Encyclopedia (Electronic Edition),, Artech House, Boston, 1998.

2. Han, , S.-K., , H.-T. Kim, S.-H. Park, and K.-T. Kim, "Effcient radar target recognition using a combination of range profile and time-frequency analysis," Progress In Electromagnetics Research , Vol. 108, 131-140, 2010.

3. Calvo-Gallego, , J. , F. Perez-Martnez, and , "Simple traffic surveillance system based on range-Doppler radar images," Progress In Electromagnetics Research, Vol. 125, 343-364, 2012.

4. Huang, , C. W. and K. C. Lee, "Application of ICA technique to PCA based radar target recognition," Progress In Electromagnetics Research,, Vol. 105, 157-170, 2010.

5. Crowgey, , B. R., , E. J. Rothwell, L. C. Kempel, and E. L. Mokole, "Comparison of UWB short-pulse and stepped-frequency radar systems for imaging through barriers," Progress In Electromagnetics Research, Vol. 110, 403-419, 2010.

6. Park, , S. H. , H. T. Kim, and , "Stepped-frequency ISAR motion compensation using particle swarm optimization with an island model," Progress In Electromagnetics Research, Vol. 85, 25-37, 2008.

7. Zhai, W. , Y. Zhang, and , "Application of super-SVA to steppe chirp radar imaging with frequency band gaps between subchirps," Progress In Electromagnetics Research B, Vol. 30, 7182, 2011.

8. Park, , S.-H., H.-T. Kim, and K.-T. Kim, "Stepped-frequency ISAR motion compensation using particle swarm optimization with an island model ," Progress In Electromagnetics Research, Vol. 85, 25-37, 2008.

9. Wehner, D. R., High-resolution Radar, Artech House, Boston, Boston, 1995..

10. De Maio, , A., "Polarimetric adaptive detection of range-distributed targets, ," IEEE Transactions on Signal Processing , Vol. 50, No. 9, 2159-2159, 2002.

11. Habib, M. A., , M. Barkat, B. Aissa, and T. A. Denidni, "CA-CFAR detection performance of radar targets embedded in ``non centered chi-2 Gamma" clutter," Progress In Electromagnetics Research, Vol. 88, 135-148, 2008.

12. Van Der Spek, , G. A., "Detection of a distributed target," IEEE Transactions on Aerospace and Electronics Systems, Vol. 7, No. 5, 922-931, 1971.

13. Hughes, P. K., "A high-resolution radar detection strategy," IEEE Transactions on Aerospace and Electronics Systems, Vol. 19, No. 5, 663-667, 1983.

14. Gerlach, K., M. Steiner, and F. C. Lin, "Detection of a spatially distributed target in white noise," IEEE Signal Processing Letters,, Vol. 4, 198-200, 1997.

15. Gerlach, , K. , M. J. Steiner, and , "Adaptive detection of range distributed targets," IEEE Transactions on Signal Processing,, Vol. 47, No. 7, 1844-1851, 1999.

16. Conte, , E., , A. De Maio, and G. Ricci, "GLRT-based detection algorithms for range-spread targets," IEEE Transactions on Signal Processing,, Vol. 49, No. 7, 1336-1348, 2001.

17. De Maio, A., A. Farina, and , "Adaptive detection of range spread targets with orthogonal rejection," IEEE Transactions on Aerospace and Electronics Systems, Vol. 43, No. 2, 737-751, 2007.

18. Bandiera, , F., A. De Maio, A. S. Greco, and G. Ricci, "Adaptive radar detection of distributed targets in homogeneous and partially homogeneous noise plus subspace interference, ," IEEE Transactions on Signal Processing, Vol. 55, No. 4, 1223-1237, 2007.

19. Gong, , Q., Z.-D. Zhu, and , "Study stap algorithm on interference target detect under non-homogenous environment," Progress In Electromagnetics Research, Vol. 99, 211-224, 2009.

20. Hao, , C., , F. Bandiera, J. Yang, D. Orlando, S. Yan, and C. Hou, "Adaptive detection of multiple point-like targets under conic constraints ," Progress In Electromagnetics Research, Vol. 129, 231-250, 2012.

21. Wang, , X., L. Jin, and J. Gao, "A study on detection algorithm for range-distributed targets in stepped-frequency radar," Modern Radar, Vol. 31, No. 5, 35-38, 2009.

22. Levanon, , N., "Stepped-frequency pulse-train radar signal," IEE Proceedings Radar, Sonar and Navigation,, Vol. 149, No. 6, 297-309, 2002.

23. Tian, , B., , D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system,"," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

24. Mao, , X., , D.-Y. Zhu, L.Wang, and Z.-D. Zhu, "Comparative study of RMA and PFA on their responses to moving target," Progress In Electromagnetics Research, Vol. 110, 103-124, 2010..

25. Wu, , Z.-S., J.-P. Zhang, L.-X. Guo, and P. Zhou, "An improved two-scale model with volume scattering for the dynamic ocean surface ," Progress In Electromagnetics Research, Vol. 89, 39-56, 2009.

26. Chua, , M. Y., V. C. Koo, and , "FPGA-based chirp generator for high resolution UAV SAR," Progress In Electromagnetics Research, Vol. 99, 71-88, 2009.

27. Li, , D., T. Long, and , "Target's redundancy removed algorithms of step frequency radar ," Acta Electronica Sinica, Vol. 28, No. 6, 60-63, 2000.

28. Zhang, , H., S. Zhang, and Q. Li, "Target extracting algorithm and system parameter design in stepped frequency modulated radar," Acta Electronica Sinica,, Vol. 35, No. 6, 1153-1158, 2007.

29. Oppenheim, A. V., R. W. Schafer, and , Discrete-time Signal Processing,, 3rd Ed., Prentice-Hall, Inc., 2009.

30. Miller, K. S., Multidimensional Gaussian Distributions,, Wiley, New York, 1964..

© Copyright 2014 EMW Publishing. All Rights Reserved