PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 130 > pp. 225-240

RECONSTRUCTION OF MICROWAVE ABSORPTION PROPERTIES IN HETEROGENEOUS TISSUE FOR MICROWAVE-INDUCED THERMO-ACOUSTIC TOMOGRAPHY

By J. Wang, Z. Zhao, J. Song, X. Zhu, Z.-P. Nie, and Q. H. Liu

Full Article PDF (299 KB)

Abstract:
Aiming to efficiently overcome the acoustic refraction and accurately reconstruct the microwave absorption properties in heterogeneous tissue, an iterative reconstruction method is proposed for microwave-induced thermo-acoustic tomography (MITAT) system. Most current imaging methods in MITAT assume that the heterogeneous sound velocity (SV) distribution obeys a simple Gaussian distribution. In real problem, the biological tissue may have several different inclusions with different SV distribution. In this case, the acoustic refraction must be taken into account. The proposed iterative method is consisted of an iterative engine with time reversal mirror (TRM), fast marching method (FMM) and simultaneous algebraic reconstruction technique (SART). This method utilizes TRM, FMM and SART to estimate the SV distribution of tissue to solve the phase distortion problem caused by the acoustic refraction effect and needs little prior knowledge of the tissue. The proposed method has great advantages in both spatial resolution and contrast for imaging tumors in acoustically heterogeneous medium. Some numerical simulation results are given to demonstrate the excellent performance of the proposed method.

Citation:
J. Wang, Z. Zhao, J. Song, X. Zhu, Z.-P. Nie, and Q. H. Liu, "Reconstruction of Microwave Absorption Properties in Heterogeneous Tissue for Microwave-Induced Thermo-Acoustic Tomography," Progress In Electromagnetics Research, Vol. 130, 225-240, 2012.
doi:10.2528/PIER12062704
http://www.jpier.org/PIER/pier.php?paper=12062704

References:
1. Ku, G., B. D. Fornage, X. Jin, M. Xu, K. K. Hunt, and L. V. Wang, "Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging," Technol. Cancer Res. Treat., Vol. 4, No. 5, 1-7, 2005.

2. Kruger, R. A., P. Liu, Y. R. Fang, and C. R. Appledorn, "Photoa-coustic ultrasound (PAUS) --- Reconstruction tomography," Med. Phys., Vol. 22, No. 10, 1605-1609, 1995.
doi:10.1118/1.597429

3. Ku, G. and L. V. Wang, "Scanning microwave-induced thermoacoustic tomography: Signal, resolution and contrast," Med. Phys., Vol. 28, No. 1, 4-10, 2001.
doi:10.1118/1.1333409

4. Zeng, X. and G. Wang, "Numerical study of microwave-induced thermo-acoustic effect for early breast cancer detection," IEEE Antennas and Propagation Society International Symposium, 839-842, 2005.

5. Xu, M. and L. V. Wang, "Pulsed-microwave-induced thermoacoustic tomography: Filtered backprojection in a circular measurement configuration," Med. Phys., Vol. 29, No. 8, 1661-1669, 2002.
doi:10.1118/1.1493778

6. Hristova, Y., P. Kuchment, and L. Nguyen, "Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media," Inv. Probl., Vol. 24, No. 5, 055006, 2008.
doi:10.1088/0266-5611/24/5/055006

7. Hristova, Y., "Time reversal in thermoacoustic tomography --- An error estimate," Inv. Probl., Vol. 25, No. 5, 055008, 2009.
doi:10.1088/0266-5611/25/5/055008

8. Agranovsky, M. and P. Kuchment, "Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography," Inv. Probl., Vol. 23, No. 5, 2089, 2007.
doi:10.1088/0266-5611/23/5/016

9. Jin, X. and L. V. Wang, "Thermoacoustic tomography with correction for acoustic speed variations," Phys. Med. Biol., Vol. 51, 6437-6448, 2006.
doi:10.1088/0031-9155/51/24/010

10. Jin, X., C. Li, and L. V. Wang, "Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography," Med. Phys., Vol. 35, No. 7, 3205-3214, 2008.
doi:10.1118/1.2938731

11. Zhang, J. and M. A. Anastasio, "Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography ," Proc. SPIE, Vol. 6086, 339-345, 2006.

12. Xie, Y., B. Guo, J. Li, G. Ku, and L. V. Wang, "Adaptive and robust methods of reconstruction (ARMOR) for thermoacoustic tomography," IEEE Trans. Biomed. Eng., Vol. 55, No. 12, 2741-2752, 2008.
doi:10.1109/TBME.2008.919112

13. Cox, B. T. and B. E. Treeby, "Artifact trapping during time reversal photoacoustic imaging for acoustically heterogeneous media," IEEE Trans. Med. Imag., Vol. 29, No. 2, 387-396, 2010.
doi:10.1109/TMI.2009.2032358

14. Xu, Y. and L. V. Wang, "Effects of acoustic heterogeneity in breast thermoacoustic tomography," IEEE Trans. Ultrason., Ferroelect. Control., Vol. 50, No. 9, 1134-1146, 2003.
doi:10.1109/TUFFC.2003.1235325

15. Li, S., K. Mueller, M. Jackowski, D. Dione, and L. Staib, Fast marching method to correct for refraction in ultrasound computed tomography, IEEE International Symposium in Biomedical Imaging (ISBI), 896-899, 2006.

16. Andersen, A. and A. Kak, "Simultaneous algebraic reconstruction technique (SART)," Ultrason. Imaging, Vol. 6, 81-94, 1984.
doi:10.1016/0161-7346(84)90008-7

17. Duric, N., P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, "Detection of breast cancer with ultrasound tomography: First results with the computed ultrasound risk evaluation (CURE) prototype," Med. Phys., Vol. 34, No. 2, 773-785, 2007.
doi:10.1118/1.2432161

18. Li, S., M. Jackowski, D. Dione, L. Staib, and K. Mueller, "Refraction corrected transmission ultrasound computed tomography for application in breast imaging," Med. Phys., Vol. 37, No. 5, 2233-2246, 2010.
doi:10.1118/1.3360180

19. Duric, N., P. Littrup, A. Babkin, D. Chambers, and S. Azevedo, "Development of ultrasound tomography for breast imaging: Technical assessment," Med. Phys., Vol. 32, No. 5, 1375-1386, 2005.
doi:10.1118/1.1897463

20. Quan, Y. and L. Huang, "Sound-speed tomography using first-arrival transmission ultrasound for a ring array," Proc. SPIE, Vol. 6513, 2007.

21. Xu, Y. and L. V. Wang, "Time reversal and its application to tomography with diffracting sources," Phys. Rev. Lett., Vol. 92, No. 3, 1-4, 2004.
doi:10.1103/PhysRevLett.92.033902

22. Fink, M., "Time reversal of ultrasonic fields I. Basic principles," IEEE Trans. Ferroelectrics, Frequency Control., Vol. 39, No. 5, 555-567, 1992.
doi:10.1109/58.156174

23. Fink, M. and C. Prada, "Acoustic time reversal mirror," Inv. Probl., Vol. 17, No. 1, 1-38, 2001.
doi:10.1088/0266-5611/17/1/201

24. Chen, G. P., Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "A computational study of time reversal mirror technique for microwave-induced thermo-acoustic tomography," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 12, 2191-2204, 2008.
doi:10.1163/156939308787522555

25. Chen, G. P., W. B. Yu, Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11, 1565-1574, 2008.
doi:10.1163/156939308786390021

26. Zhang, H., C. Thurber, and C. Rowe, "Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings," Bull. Seism. Soc. Am., Vol. 93, No. 5, 1904-1912, 2003.
doi:10.1785/0120020241

27. Ramananantoandro, R. and N. Bernitsas, "A computer algorithm for automatic picking of refraction first-arrival-time," Geoexploration, Vol. 24, No. 2, 147-151, 1987.
doi:10.1016/0016-7142(87)90088-3

28. Capozzoli, A., C. Curcio, and A. Liseno, "GPU-based omega-k tomographic processing by 1D non-uniform FFTs," Progress In Electromagnetics Research M, Vol. 23, 279-298, 2012.
doi:10.2528/PIERM11083003

29. Jiang, M. and G. Wang, "Convergence of the simultaneous algebraic reconstruction technique (SART)," IEEE Trans. Imag. Proc., Vol. 12, No. 8, 2003.

30. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350

31. Mast, T. D., "Empirical relationships between acoustic parameters in human soft tissue," Acoust. Res. Lett., Vol. 1, No. 2, 37-42, 2000.
doi:10.1121/1.1336896

32. Cox, B. T., S. Kara, S. R. Arridge, and P. C. Beard, "k-space propagation models for acoustic heterogeneous media: Application to biomedical photoacoustic ," J. Acoust. Soc. Am., Vol. 121, No. 6, 3453-3464, 2007.
doi:10.1121/1.2717409

33. Treeby, B. E. and B. T. Cox, "k-wave: A MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields," J. Biomed. Opt., Vol. 15, No. 2, 021314, 2010.
doi:10.1117/1.3360308

34. Li, C., L. Huang, N. Duric, H. Zhang, and C. Rowe, "An improved automatic time-of-flight picker for medical ultrasound tomography," Ultrasonic, Vol. 49, No. 1, 61-72, 2009.
doi:10.1016/j.ultras.2008.05.005


© Copyright 2014 EMW Publishing. All Rights Reserved