PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 131 > pp. 135-152

A SIMPLE LOCAL APPROXIMATION FDTD MODEL OF SHORT APERTURES WITH A FINITE THICKNESS

By R. Xiong, B. Chen, Y. Mao, B. Li, and Q.-F. Jing

Full Article PDF (1,741 KB)

Abstract:
This paper brings forward a simple local approximation finite-difference time-domain (FDTD) method for the analysis of short apertures with a finite thickness. By applying the equivalence principle together with a simple local approximation, the varying field distribution is accurately derived. The updating equations for the slot field can be derived by casting the field distributions into the contour paths containing the aperture. The method has been applied to two problems and the results are compared with the high-resolution standard FDTD simulation and the measurement results. The accuracy of the proposed method is verified from the comparison of both the field distribution and the time-domain and frequency-domain slot coupling results. It is demonstrated that the local approximation is highly efficient and timesaving, and the present method is stable, numerically and computationally efficient.

Citation:
R. Xiong, B. Chen, Y. Mao, B. Li, and Q.-F. Jing, "A Simple Local Approximation FDTD Model of Short Apertures with a Finite Thickness," Progress In Electromagnetics Research, Vol. 131, 135-152, 2012.
doi:10.2528/PIER12072201
http://www.jpier.org/PIER/pier.php?paper=12072201

References:
1. Kong, , Y.-D. , Q.-X. Chu, and , "Reduction of numerical dispersion of the six-stages split-step unconditional-stable FDTD method with controling parameters," Progress In Electromagnetics Research , Vol. 122, , 175-196, , 2012.
doi:10.2528/PIER11082512

2. Lee, , K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on lorentz-drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research,, Vol. 116, 441-456, 2011.

3. Izadi, , M., , M. Z. A. Ab Kadir, C. Gomes, and W. F. W. Ahmad, "An analytical second-FDTD method for evaluation of electric and magnetic ¯elds at intermediate distances from lightning channel ," Progress In Electromagnetics Research, Vol. 110, 329-352, , 2010..
doi:10.2528/PIER10080801

4. Xiao, , S.-Q., , Z. H. Shao, and B.-Z. Wang, "Application of the improved matrix type FDTD method for active antenna analysis," Progress In Electromagnetics Research, Vol. 100, , 245-263, 2010.
doi:10.2528/PIER09112204

5. Sirenko, , K., "An FFT-accelerated FDTD scheme with exactAn FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, , Vol. 111, , 331-364, 2011.
doi:10.2528/PIER10102707

6. Cao, , D.-A., Q.-X. Chu, and , "FDTD analysis of chiral discontinuities in waveguides," Progress In Electromagnetics Research Letters , Vol. 20, 19-26, 2011.

7. Ai, , X., , Y. Han, C. Y. Li, and X.-W. Shi, "Analysis of dispersion relation of piecewise linear recursive convolution FDTD method for space-varying plasma," Progress In Electromagnetics Research Letters, Vol. 22, 83-93, 2011..

8. Silva, , A. O., R. Bertholdo, M. G. Schiavetto, B.-H. V. Borges, S. J. L. Ribeiro, Y. Messaddeq, and M. A. Romero, "Comparative analysis between experimental characterization results and numerical FDTD modeling of self-assembled photonic crystals," Progress In Electromagnetics Research B, Vol. 23, 329-342, 2010.
doi:10.2528/PIERB10060404

9. Koo, V. C., , Y. K. Chan, V. Gobi, M. Y. Chua, C. H. Lim, C.- S. Lim, C. C. Thum, T. S. Lim, Z. Bin Ahmad, K. A. Mahmood, M. H. Bin Shahid, and , "A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring," Progress In Electromagnetics Research,, Vol. 122, 245-268, 2012.
doi:10.2528/PIER11092604

10. Wounchoum, P., , D. Worasawate, C. Phongcharoenpanich, and M. Krairiksh, "A switched-beam antenna using circumferential-slots on a concentric sectoral cylindrical cavity excited by coupling slots," Progress In Electromagnetics Research,, Vol. 120, 127-141, 2011..

11. Wang, X., , M. Zhang, and S.-J. Wang, "Practicability analysis and application of PBG structures on cylindrical conformal microstrip antenna and array," Progress In Electromagnetics Research, Vol. 115, 495-507, 2011.

12. Yang, , P., , F. Yang, and Z.-P. Nie, , "DOA estimation with sub-array divided technique and interpolated esprit algorithm on a cylindrical conformal array antenna ," Progress In Electromagnetics Research, Vol. 103, 201-216, , 2010.
doi:10.2528/PIER10011904

13. Pergol, M., W. Zieniutycz, and , "Rectangular microstrip resonator illuminated by normal-incident plane wave," Progress In Electromagnetics Research,, Vol. 120, 83-97, , 2011.

14. Ahdi Rezaeieh, , A., M. Kartal, and , "A new triple band circularly polarized square slot antenna design with crooked T and F-shape strips for wireless applications," Progress In Electromagnetics Research, Vol. 121, 1-18, 2011.
doi:10.2528/PIER11081506

15. Wang, , C.-J., T. H. Lin, and , "A multi-band meandered slotted-groundplane resonator and its application of low-pass filter," Progress In Electromagnetics Research,, Vol. 120, 249-262, , 2011.

16. Wang, , C.-J., Y. Dai, and , "Studies of power-combing of open slot antenna arrays," Progress In Electromagnetics Research, Vol. 120, 423-437, 2011.

17. Melamed, , T., , "Pulsed beam expansion of electromagnetic aperture field," Progress In Electromagnetics Research, , Vol. 114, 317-332, , 2011..

18. Xu, , K., , Z. Fan, D.-Z. Ding, and R.-S. Chen, "Gpu accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606

19. Li, , J., , L.-X. Guo, and H. Zeng, "FDTD method investigation on the polarimetric scattering from 2-D rough surface," Progress In Electromagnetics Research, Vol. 101, 173-188, 2010.
doi:10.2528/PIER09120104

20. Gilbert, , J. , R. Holland, and , "Implementation of the thin-slot formalism in the ¯nite-di®erence EMP code THRED II," IEEE Trans. Nucl. Sci., Vol. 28, 4269-4274, , 1981.
doi:10.1109/TNS.1981.4335711

21. Taflove, , A., , et al., "Detailed FDTD analysis of electromagnetic fields penetrating narrow slots and lapped joint in thick conducting screen," IEEE Transactions on Antennas and Propagation, Vol. 36, 247-257, 1988.
doi:10.1109/8.1102

22. Riley, , D. J. and , C. D. Turner, and , "Hybrid thin-slot algorithm for the analysis of narrow apertures in finite difference time-domain calculations," IEEE Transactions on Antennas and Propagation, Vol. 38, 1943{-1950, , 1990..
doi:10.1109/8.60983

23. Xiong, , R., B. Chen, Q. Yin, and Z.-Y. Cai, , "Improved formalism for the FDTD analysis of thin-slot penetration by equivalence principle," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 655-657, 2011.
doi:10.1109/LAWP.2011.2160519

24. Ma, , K.-P., , M. Li, J. L. Drewniak, T. H. Hubing, and T. P. V. Doren, "Comparison of FDTD algorithms for Electromagnetic Compatiblity,", Vol. 39, 147-155, , 1997.

25. Harrington, , R. F., , Time Harmonic Electromagnetic Fields,, McGraw-Hill, , New York, 1961.

26. Xiong, , R., , B. Chen, Q. Yin, and B. H. Zhou, "The capacitance thin-slot formalism revisited: An alternative expression for the thin-slot penetration," Journal of Electromagnetic Waves and Applications,, Vol. 26, No. 4, 446-458, 2012..
doi:10.1163/156939312800030622

27. Lei, J. Z., , C. H. Liang, and Y. Zhang, , "Study on shielding e®ectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 85-112, 2007.
doi:10.2528/PIER07041905

28. Vaccari, , A., , A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3-D subgridding FDTD algorithm for large simulation," Progress In Electromagnetics Research,, Vol. 120, 263-292, 2011..

30. Ergul, , O., , "Parallel implementation of MLFMA for homgeneous objects with various material properties," Progress In Electromagnetics Research, Vol. 121, 505-520, 2010.

31. Roden, J. A. , S. D. Gedney, and , "Convolution PML (CPML):~An e±cient FDTD implementation of the CFS-PML for arbitrary media," Microwave and Optical Technology Letters, Vol. 27, No. 5, 334-339, , 2000..
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

32. Cai, , Z.-Y., , B. Chen, Q. Yin, and R. Xiong, , "The WLP-FDTD method for periodic structures with oblique incident wave," IEEE Transactions on Antennas and Propagation,, Vol. 59, 3780-3785, 2011.
doi:10.1109/TAP.2011.2163791

33. Mao, , Y.-F., , B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for the oblique incidence programs on periodic structures," Progress In Electromagnetics Research, Vol. .128, 153-170, 2012..

34. Robinson, , M. P., , T. M. Benson, C. Christopoulos, J. F. Dawson, M. D. Ganley, A. C. Marvin, S. J. Porter, and D. W. P. Thomas, "Analytical formulation for the shielding effectiveness of enclosures with apertures ," IEEE Trans. Electromagnetic Compatibility,, Vol. 40, No. 3, 240-247, 1998.
doi:10.1109/15.709422


© Copyright 2014 EMW Publishing. All Rights Reserved