PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 133 > pp. 37-51

GAIN-ASSISTED NEGATIVE REFRACTIVE INDEX IN A QUANTUM COHERENT MEDIUM

By J.-Q. Shen

Full Article PDF (285 KB)

Abstract:
A new scheme for overcoming losses with incoherent optical gain in a quantum-coherent left-handed atomic vapor is suggested. In order to obtain low-loss, lossless or active left-handed media (LHM), a pump field, which aims at realizing population inversion of atomic levels, is introduced into a four-level atomic system. Both analytical and numerical results are given to illustrate that such an atomic vapor can exhibit intriguing electric and magnetic responses required for achieving simultaneously negative permittivity and permeability (and hence a gain-assisted quantum-coherent negative refractive index would emerge). The quantum-coherent left-handed atomic vapor presented here could have four fascinating characteristics: i) three-dimensionally isotropic negative refractive index, ii) doublenegative atomic medium at visible and infrared wavelengths, iii) high-gain optical amplification, and iv) tunable negative refractive index based on quantum coherent control. Such a three-dimensionally isotropic gain medium with negative refractive index at visible and infrared frequencies would have a potential application in design of new quantum optical and photonic devices, including superlenses for perfect imaging and subwavelength focusing.

Citation:
J.-Q. Shen, "Gain-Assisted Negative Refractive Index in a Quantum Coherent Medium," Progress In Electromagnetics Research, Vol. 133, 37-51, 2013.
doi:10.2528/PIER12072203
http://www.jpier.org/PIER/pier.php?paper=12072203

References:
1. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

2. Pendry, J. B., A. J. Holden, D. J. Robbins, W. J. Stewart, "Low frequency plasmons in thin wire structures," J. Phys. Condens. Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

4. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

5. Zhang, Z. M. and C. J. Fu, "Unusual photo tunneling in the presence of a layer with a negative index," Appl. Phys. Lett., Vol. 80, 1097-1099, 2002.
doi:10.1063/1.1448172

6. Dong, W., L. Gao, and C.-W. Qiu, "Goos-Hänchen shift at the surface of chiral negative refractive media," Progress in Electromagnetics Research, Vol. 90, 255-268, 2009.
doi:10.2528/PIER08122002

7. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2001.
doi:10.1103/PhysRevLett.85.3966

8. Chen, L., S. He, and L. Shen, "Finite-size effects of a left-handed material slab on the image quality," Phys. Rev. Lett., Vol. 92, 107404, 2004.
doi:10.1103/PhysRevLett.92.107404

9. Engheta, N., "Idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas Wireless. Propag. Lett., Vol. 1, 10-13, 2002.
doi:10.1109/LAWP.2002.802576

10. Shen, L., S. He, and S. Xiao, "Stability and quality factor of a one-dimensional subwavelength cavity resonator containing a left-handed material," Phys. Rev. B, Vol. 69, 115111, 2004.
doi:10.1103/PhysRevB.69.115111

11. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

12. Choi, J. and C. Seo, "High-e±ciency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress in Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609

13. Shelby, R. A., D. R. Smith, S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 209, 77-79, 2001.
doi:10.1126/science.1058847

14. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, 489-491, 2001.
doi:10.1063/1.1343489

15. Hu, L. B. and S. T. Chui, "Characteristics of electromagnetic wave propagation in uniaxially anisotropic left-handed materials," Phys. Rev. B, Vol. 66, 085108, 2002.
doi:10.1103/PhysRevB.66.085108

16. Koschny, T., L. Zhang, and C. M. Soukoulis, "Isotropic three-dimensional left-handed metamaterials," Phys. Rev. B, Vol. 71, 121103(R, 2005.

17. Vendik, I., O. Vendik, and M. Odit, "Isotropic artificial media with simultaneously negative permittivity and permeability," Microwave Opt. Tech. Lett., Vol. 18, 2553-2556, 2006.
doi:10.1002/mop.22002

18. Guney, D. O., T. Koschny, and C. M. Soukoulis, "Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial ," Opt. Express, Vol. 18, 12348-12353, 2010.
doi:10.1364/OE.18.012348

19. Logeeswaran, V. J., M. S. Islam, M. L. Chan, D. A Horsley, W. Wu, S.-Y. Wang, and R. S. Williams, "Realization of 3D isotropic negative index materials using massively parallel and manufacturable microfabrication and micromachining technology," Mater. Res. Soc. Symp. Proc., Vol. 919, 0919-J02, 2006.

20. Oktel, M. Ö. and Ö E. Müstecapho·glu, "Electromagnetically induced left-handedness in a dense gas of three-level atoms," Phys. Rev. A, Vol. 70, 053806, 2004.
doi:10.1103/PhysRevA.70.053806

21. Shen, J. Q., Z. C. Ruan, and S. He, "How to realize a negative refractive index material at the atomic level in an optical frequency range?," J. Zhejiang Univ. Science (China), Vol. 5, 1322-1326, 2004.
doi:10.1631/jzus.2004.1322

22. Shen, J. Q., "Negatively refracting atomic vapor," J. Mod. Opt., Vol. 53, 2195-2205, 2006.
doi:10.1080/09500340600812966

23. Thommen, Q. and P. Mandel, "Electromagnetically induced left handedness in optically excited four-level atomic media," Phys. Rev. Lett., Vol. 96, 053601, 2006.
doi:10.1103/PhysRevLett.96.053601

24. Thommen, Q. and P. Mandel, "Left-handed properties of erbium-doped crystals," Opt. Lett., Vol. 31, 1803-1805, 2006.
doi:10.1364/OL.31.001803

25. Krowne, C. M. and J. Q. Shen, "Dressed-state mixed-parity transitions for realizing negative refractive index," Phys. Rev. A, Vol. 79, 023818, 2009.
doi:10.1103/PhysRevA.79.023818

26. Soukoulis, C. M. and M. Wegener, "Past achievements and future challenges in 3D photonic metamaterials," Nature Photon., Vol. 5, 523-530, 2011.

27. Huang, Z., T. Koschny, and C. M. Soukoulis, "Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium," Phys. Rev. Lett., Vol. 108, 187402, 2012.
doi:10.1103/PhysRevLett.108.187402

28. Fang, A., Z. Huang, T. Koschny, and C. M. Soukoulis, "Overcoming the losses of a split ring resonator array with gain," Opt. Express, Vol. 19, 12688-12699, 2011.
doi:10.1364/OE.19.012688

29. Fang, A., T. Koschny, M. Wegener, and C. M. Soukoulis, "Self-consistent calculation of metamaterials with gain," Phys. Rev. B, Vol. 79, 241104(R), 2009.

30. Meinzer, N., M. Ruther, S. Linden, C. M. Soukoulis, G. Khitrova, J. Hendrickson, J. D. Olitzky, H. M. Gibbs, and M. Wegener, "Arrays of Ag split-ring resonators coupled to InGaAs single-quantum-well gain," Opt. Express, Vol. 18, 24140-24151, 2010.
doi:10.1364/OE.18.024140

31. Tassin, P., L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, "Low-loss metamaterials based on classical electromagnetically induced transparency," Phys. Rev. Lett., Vol. 102, 053901, 2009.
doi:10.1103/PhysRevLett.102.053901

32. Zhao, S. C., Z. D. Liu, and Q. X. Wu, "Negative refraction without absorption via both coherent and incoherent FIelds in a four-level left-handed atomic system ," Opt. Commun., Vol. 283, 3301-3304, 2010.
doi:10.1016/j.optcom.2010.04.054

33. Scully, M. O. and M. S. Zubairy, Quantum Optics, Chap. 5, Cambridge University Press, Cambridge, England, 1997.

34. Jackson, J. D., Classical Electrodynamics, 3rd Ed., Chap. 4, 159-162, John Wiley & Sons, New York, 2001.

35. Cook, D. M., The Theory of the Electromagnetic Field, Chap. 11, Prentice-Hall, Inc., New Jersey, 1975.

36. Moseley, R. R., S. Shepherd, D.J. Fulton, B. D. Sinclair, and M. H. Dunn, "Spatial consequences of electromagnetically induced transparency: Observation of electromagnetically induced focusing ," Phys. Rev. Lett., Vol. 74, 670-673, 1995.
doi:10.1103/PhysRevLett.74.670

37. Wang, H., D. Goorskey, and M. Xiao, "Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system," Phys. Rev. Lett., Vol. 87, 073601, 2001.
doi:10.1103/PhysRevLett.87.073601

38. Imamoglu, A., H. Schmidt, G. Woods, and . Deutsch, "Strongly interacting photons in a nonlinear cavity," Phys. Rev. Lett., Vol. 79, 1467-1470, 1997.
doi:10.1103/PhysRevLett.79.1467

39. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarized waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904, 2005.
doi:10.1103/PhysRevLett.95.123904

40. Jelinek, L., R. Marqués, F. Mesa, and J. D. Baena, "Periodic arrangements of chiral scatterers providing negative refractive index bi-isotropic media," Phys. Review B, Vol. 77, 205110, 2008.
doi:10.1103/PhysRevB.77.205110

41. Silveirinha, M. G., P. A. Belov, and C. R. Simovski, "Ultimate limit of resolution of subwavelength imaging devices formed by metallic rods," Opt. Lett., Vol. 33, 1726-1728, 2008.
doi:10.1364/OL.33.001726

42. Wu, J.-H., X.-G. Wei, D.-F. Wang, Y. Chen, and J.-Y. Gao, "Coherent hole-burning phenomenon in a Doppler broadened three-level ¤-type atomic system," J. Opt. B: Quantum Semiclass. Opt., Vol. 6, 54-58, 2004.
doi:10.1088/1464-4266/6/1/009


© Copyright 2014 EMW Publishing. All Rights Reserved