Vol. 132
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-10-03
Soft-Focusing in Anisotropic Indefinite Media through Hyperbolic Dispersion
By
Progress In Electromagnetics Research, Vol. 132, 389-402, 2012
Abstract
Materials that exhibit negative refraction may have many novel applications. We seek to evaluate the possibility of soft-focusing of microwave signals using a medium with an indefinite (hyperbolic) anisotropic permittivity tensor. We fabricated a 147 mm thick and 220 mm wide Styrofoam sample with an embedded array of 12-gauge brass wires of 6.35 mm lattice spacing. Two single-loop antennas were used to approximately generate a transverse magnetic (TM) point source and the associated detector. Using an Agilent 8510C Vector Network Analyzer (VNA), the frequency spectrum was scanned between 7 and 9 GHz. Relative gain or loss measurements were taken at equal spatial steps behind the sample. A scanning robot was used for automatic scanning in the x, y, and z directions, in order to establish the focusing patterns. The signal amplitudes measured in the presence and absence of the sample were compared. The robot was controlled using LabVIEW1, which also collected the data from the VNA and passed it to MATLAB2 for processing. A soft focusing spot was observed when the antennas were placed in two different symmetric configurations with respect to the sample. These results suggest a method for focusing electromagnetic waves using negative refraction in indefinite (hyperbolic) anisotropic materials.
Citation
Sara Wheeland, Alireza V. Amirkhizi, and Sia Nemat-Nasser, "Soft-Focusing in Anisotropic Indefinite Media through Hyperbolic Dispersion," Progress In Electromagnetics Research, Vol. 132, 389-402, 2012.
doi:10.2528/PIER12080207
References

1. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773-6, 1996.
doi:10.1103/PhysRevLett.76.4773

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-7, 2000.

3. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics USPEKHI, Vol. 10, No. 4, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699

4. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-9, 2000.
doi:10.1103/PhysRevLett.85.3966

5. Shen, N. H., S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Compact planar far-field superlens based on anisotropic left-handed metamaterials," Physical Review Letters B, Vol. 80, 115123, 2009.

6. Driscoll, T., D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Applied Physics Letters, Vol. 88, 081101-1-3, 2006.

7. Smith, D. R. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Physical Review Letters, Vol. 90, No. 7, 077405-1-4, 2003.
doi:10.1103/PhysRevLett.90.077405

8. Smith, D. R., P. Kolinko, and D. Schurig, "Negative refraction in indefinite media," Journal of the Optical Society of America B: Optical Physics, Vol. 21, No. 5, 1032-1042, 2004.
doi:10.1364/JOSAB.21.001032

9. Liu, H., Q. Lv, H. Luo, S. Wen, W. Shu, and D. Fan, "Focusing of vectorial fields by a slab of indefinite media," Journal of Optics A: Pure and Applied Optics, Vol. 11, 105103, 2009.
doi:10.1088/1464-4258/11/10/105103

10. Fang, A., T. Koschny, and C. M. Soukoulis, "Optical anisotropic metamaterials: Negative refraction and focusing," Physical Review Letters B, Vol. 79, 245127, 2009.

11. Cheng, Q. and T. J. Cui, "Planar microwave lens based on complementary metamaterials," 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, 2010.

12. Salandrino, A. and N. Engheta, "Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations," Physical Review Letters B, Vol. 74, 075103, 2006.

13. Schurig, D. and D. R. Smith, "Spatial filtering using media with indefinite permittivity and permeability tensors," Applied Physics Letters, Vol. 82, No. 14, 2215-7, 2003.
doi:10.1063/1.1562344

14. Smith, D. R., D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Applied Physics Letters, Vol. 84, No. 13, 2244-6, 2004.
doi:10.1063/1.1690471

15. Nemat-Nasser, S. C., A. V. Amirkhizi, W. J. Padilla, D. N. Basov, S. Nemat-Nasser, D. Bruzewicz, and G. Whitesides, "Terahertz plasmonic composites," Physical Review E, Vol. 75, 036614-1-7, 2007.

16. Smith, D. R., D. C. Vier, W. J. Padilla, S. C. Nemat-Nasser, and S. Schultz, "Loop-wire medium for investigating plasmons at microwave frequencies," Applied Physics Letters, Vol. 75, No. 10, 1425-7, 1999.
doi:10.1063/1.124714

17. Nemat-Nasser, S., S. C. Nemat-Nasser, T. Plaisted, A. Starr, and A. V. Amirkhizi, "Multifunctional materials," BIOMIMETICS: Biologically Inspired Technologies, Y. Bar-Cohen, Ed., 309-341, CRC Press, 2005.

18. Marshall, S., A. V. Amirkhizi, and S. Nemat-Nasser, "Focusing and negative refraction in anisotropic indefinite permittivity media," Proceedings of the International Society for Optical Engineering Electroactive Polymer Actuators and Devices (EAPAD), Y. Bar-Cohen, T. Wallmersperger (eds.), San Diego, 2009.