PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 132 > pp. 91-111

SMART PROTOTYPING TECHNIQUES FOR UHF RFID TAGS: ELECTROMAGNETIC CHARACTERIZATION AND COMPARISON WITH TRADITIONAL APPROACHES

By L. Catarinucci, R. Colella, and L. Tarricone

Full Article PDF (1,274 KB)

Abstract:
Over the last few years, the active and growing interest in Radiofrequency Identification (RFID) technology has stimulated a conspicuous research activity involving design and realization of passive label-type UHF RFID tags customized for specific applications. In most of the literature, presented and discussed tags are prototyped by using either rough-and-ready procedures or photolithography techniques on rigid Printed Circuit Boards. However, for several reasons, such approaches are not the most recommended, in particular they are rather time-consuming and, moreover, they give rise to low quality devices in one case, and to cumbersome and rigid tags in the other. In this work, two alternative prototyping techniques suitable for cost-effective, time-saving and highperformance built-in-lab tags are introduced and discussed. The former is based on the joint use of flexible PCBs and solid ink printers. The latter makes use of a cutting plotter to precisely shape the tag antenna on thin copper sheets. Afterwards, a selection of tags, designed and manufactured by using both traditional and alternative techniques, is rigorously characterized from the electromagnetic point of view in terms of input impedance and whole tag sensitivity by means of appropriate measurement setups. Results are then compared, thus guiding the tag designer towards the most appropriate technique on the basis of specific needs.

Citation:
L. Catarinucci, R. Colella, and L. Tarricone, "Smart prototyping techniques for UHF RFID tags: electromagnetic characterization and comparison with traditional approaches," Progress In Electromagnetics Research, Vol. 132, 91-111, 2012.
doi:10.2528/PIER12080708
http://www.jpier.org/PIER/pier.php?paper=12080708

References:
1. Chen, S.-L., S.-K. Kuo, and C.-T. Lin, "A metallic RFID tag design for steel-bar and wire-rod management application in the steel industry," Progress In Electromagnetics Research, Vol. 91, 195-212, 2009.
doi:10.2528/PIER09021304

2. Kwon, H. and B. Lee, "Compact slotted planar inverted-F RFID tag mountable on metallic objects," Electron. Lett., Vol. 41, No. 24, 1308-1310, 2005.
doi:10.1049/el:20052940

3. Yu, B., S. J. Kim, B. Jung, F. J. Harackiewicz, and B. Lee, "RFID tag antenna using two-shorted microstrip patches mountable on metallic objects," Microwave and Optical Technology Letters, Vol. 49, No. 2, 414-416, 2007.
doi:10.1002/mop.22159

4. Catarinucci, L., R. Colella, M. De Blasi, L. Patrono, and L. Tarricone, "Enhanced UHF RFID tag for drug tracing," Journal of Medical Systems (JOMS), Springer, 2011.

5. Catarinucci, L., R. Colella, M. De Blasi, L. Patrono, and L. Tarricone, "Experimental performance evaluation of passive UHF RFID tags in electromagnetically critical supply chains ," Journal of Communications Software and Systems, Vol. 7, No. 2, 59-70, 2011.

6. Catarinucci, L., R. Colella, M. De Blasi, L. Patrono, and L. Tarricone, Improving item-level tracing systems through Ad Hoc UHF RFID tags, Proc. IEEE Radio and Wireless Symposium, RWW 2010, 160-163, 2010.

7. Vaz, A., A. Ubarretxena, I. Zalbide, D. Pardo, H. Solar, A. Garcia-Alonso, and R. Berenguer, "Full passive UHF tag with a temperature sensor suitable for human body temperature monitoring," IEEE Trans. Circuits Syst. II, Vol. 57, No. 2, 95-99, Feb. 2010.
doi:10.1109/TCSII.2010.2040314

8. Occhiuzzi, C., C. Paggi, and G. Marrocco, "Passive RFID strain-sensor based on meander-line antennas," IEEE Trans. Antennas Propagat., Vol. 59, No. 12, 4836-4840.
doi:10.1109/TAP.2011.2165517

9. Yeager, D., P. Powledge, R. Prasad, D. Wetherall, and J. Smith, Wirelessly-charged UHF tags for sensor data collection, IEEE Proceeding of RFID International Conference, 320-327, Apr. 2008.

10. Catarinucci, L., R. Colella, and L. Tarricone, "A cost-effective UHF RFID tag for transmission of generic sensor data in wireless sensor networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 5, Part 2, 1291-296, 2009.

11. Esposito, A., L. Tarricone, M. Zappatore, L. Catarinucci, and R. Colella, "A framework for contextaware home-health monitoring," International Journal of Autonomous and Adaptive Communications Systems, Vol. 3, No. 1, 75-91, 2010.
doi:10.1504/IJAACS.2010.030313

12. Catarinucci, L., M. Cappelli, R. Colella, and L. Tarricone, "A novel low-cost multisensor-tag for RFID applications in healthcare," Microwave and Optical Technology Letters, Vol. 50, No. 11, 2877-2880, 2008.
doi:10.1002/mop.23837

13. Catarinucci, L., R. Colella, and L. Tarricone, A new enhanced UHF RFID sensor-tag, Proc. of the 5th European Conference on Antennas and Propagation, EUCAP 2011, Rome, Italy, Apr. 2011..

14. Or, Y. C., K. W. Leung, R. Mittra, and K. V. S. Rao, "Analysis on the platform-tolerant radio-frequency identification tag antenna," IET Microw. Antennas Propag., Vol. 3, No. 4, 601-606, 2009.
doi:10.1049/iet-map.2008.0191

15. Catarinucci, L., R. Colella, and L. Tarricone, Optimized antennas for enhanced RFID sensor tags, Proc. of IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), Spokane, Washington, Jul. 2011.

16. Congedo, F., G. Monti, L. Tarricone, and M. Cannarile, "Broadband bowtie antenna for RF energy scavenging applications," Proceedings of the 5th European Conference on Antennas and Propagation, EUCAP 2011 , 335-337, 2011.

17. Catarinucci, L., S. Tedesco, D. De Donno, and L. Tarricone, "Platform-robust passive UHF RFID tags: A case-study in robotics," Progress In Electromagnetics Research C, Vol. 30, 27-39, 2012.

18. Monti, G., F. Congedo, D. De Donno, and L. Tarricone, "Monopole-based rectenna for microwave energy harvesting of UHF RFID systems," Progress In Electromagnetics Research C, Vol. 31, 109-121, 2012.

19. Marrocco, G. and S. Caizzone, "Electromagnetic models for passive RFID tag-to-tag communications," IEEE Transactions on Antennas and Propagation, 2012.

20. Monti, G., L. Tarricone, and M. Spartano, "X-band planar rectenna," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1116-1119, 2011.
doi:10.1109/LAWP.2011.2171029

21. Catarinucci, L., R. Colella, and L. Tarricone, "Design, development, and performance evaluation of a compact and long-range passive UHF RFID tag," Microwave and Optical Technology Letters, Vol. 54, No. 5, 1335-1339, 2012.
doi:10.1002/mop.26777

22. Monti, G., L. Catarinucci, and L. Tarricone, "Broad-band dipole for RFID applications," Progress In Electromagnetics Research C, Vol. 12, 163-172, 2010.
doi:10.2528/PIERC10012606

23. Monti, G. and F. Congedo, "UHF rectenna using a bowtie antenna," Progress In Electromagnetics Research C, Vol. 26, 181-192, 2011.

24. Catarinucci, L., S. Tedesco, and L. Tarricone, "On the use of UHF RFID antenna systems customized for robotic applications," Proc. IEEE International Symposium on Antennas and Propagation, APSURSI 2012, Chicago, IL, 2012.

25. Rao, K. V. S., P. V. Nikitin, S. F. Lam, "Antenna design for UHF RFID tags: A review and a practical application," IEEE Trans. Antennas Propagat., Vol. 53, No. 12, 3870-3876, Dec. 2005.
doi:10.1109/TAP.2005.859919

26. De Donno, D., F. Ricciato, L. Catarinucci, A. Coluccia, and L. Tarricone, "Challenge: Towards Distributed RFID Sensing with Software-Defined Radio," Proc. of the Annual International Conference on Mobile Computing and Networking, MOBICOM, 97-104, Chicago, IL, 2010.

27. De Donno, D., L. Tarricone, L. Catarinucci, V. Lakafosis, and M. M. Tentzeris, "Performance enhancement of the RFID epc gen2 protocol by exploiting collision recovery," Progress In Electromagnetics Research B, Vol. 43, 53-72, 2012.

28. Marrocco, G., "The art of UHF RFID antenna design: Impedance-matching and size-reduction techniques," IEEE Antennas Propag. Mag., Vol. 50, No. 1, 66-79, Feb. 2008.
doi:10.1109/MAP.2008.4494504

29. Monti, G., L. Catarinucci, and L. Tarricone, "Compact microstrip antenna for RFID applications," Progress In Electromagnetics Research Letters, Vol. 8, 191-199, 2009.
doi:10.2528/PIERL09042803

30. Abu, M. and M. K. A. Rahim, "Triple-band printed dipole antenna for RFID," Progress In Electromagnetics Research C, Vol. 9, 145-153, 2009.
doi:10.2528/PIERC09070703

30. Abu, M. and M. K. A. Rahim, "Triple-band printed dipole antenna for RFID," Progress In Electromagnetics Research C, Vol. 9, 145-153, 2009.
doi:10.2528/PIERC09070703

31. Amin, Y., Q. Chen, L.-R. Zheng, and H. Tenhunen, "Development and analysis of flexible UHF RFID antennas for ``green" electronics," Progress In Electromagnetics Research, Vol. 130, 1-15, 2012.

32. Yang, L., A. Rida, R. Vyas, and M. M. Tentzeris, "RFID tag and RF structures on a paper substrate using inkjet-printing technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, Part 2, 2894-2901, 2007.

33. Pranonsatit, S., D. Worasawate, and P. Sritanavut, "Affordable ink-jet printed antennas for RFID applications," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 2, No. 5, 878-883, May 2012.
doi:10.1109/TCPMT.2012.2186571

34. Ukkonen, L., T. Bjorninen, A. Z. Elsherbeni, and L. Sydänheimo, "Inkjet-printed humidity sensor for passive UHF RFID systems," IEEE Transactions on Instrumentation and Measurement, Vol. 60, No. 8, 2768-2777, 2011.
doi:10.1109/TIM.2011.2130070

35. Allen, M. L., K. Jaakkola, K. Nummila, and H. Seppa, "Applicability of metallic nanoparticle inks in RFID applications," IEEE Transactions on Components and Packaging Technologies, Vol. 32, No. 2, 325-332, Jun. 2009.
doi:10.1109/TCAPT.2008.2010505

36. Kim, N.-S. and K. N. Han, "Future direction of direct writing," Journal of Applied Physics, Vol. 108, No. 10, 102801-102806, 2010.
doi:10.1063/1.3510359

37. De Paolis, R., S. Pacchini, F. Coccetti, G. Monti, L. Tarricone, M. M. Tentzeris, and R. Plana, "Circuit model of carbon-nanotube inks for microelectronic and microwave tunable devices," IEEE MTT-S International Microwave Symposium Digest, 2011.

38. Gao, B. and M. M. F. Yuen, Optimization of silver paste printed passive UHF RFID tags, Proc. of International Conference on Electronic Packaging Technology & High Density Packaging, ICEPT-HDP, 512-515, Aug. 2009.

39. Fjelstad, J., Flexible Circuit Technology, 3rd Ed., BNR Publishing, Seaside OR, 2006.

40. Stearns, T., Handbook of Flexible Circuits, McGraw-Hill, NY, 1995.

41. Abad, E., B. Mazzolai, A. Juarros, D. Gómez, A. Mondini, I. Sayhan, A. Krenkow, and T. Becker, "Investigation of fabrication and encapsulation processes for a flexible tag microlab," Microsyst. Technol., Vol. 14, No. 4-5, 527-534, Apr. 2008.
doi:10.1007/s00542-007-0443-9

42. Dupont Products homepage, last accessed: Apr. 2012, http://www2.dupont.com/home/en-us/index.html.

43. Dobkin, D. M., The RF in RFID: Passive UHF RFID in Practice, Elsevier/Newnes, 2007.

44. Impinj UHF RFID Products homepage, last accessed: Apr. 2012, http://www.impinj.com .

45. Palmer, K. D. and M. W. Rooyen, "Simple broadband measurements of balanced loads using a network analyzer," IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 1, 266-272, 2006.
doi:10.1109/TIM.2005.861493

46. Kuo, S.-K., S.-L. Chen, and C.-T. Lin, "An accurate method for impedance measurement of RFID tag antenna," Progress In Electromagnetics Research, Vol. 83, 93-106, 2008.
doi:10.2528/PIER08042104

47. Catarinucci, L., D. De Donno, R. Colella, F. Ricciato, and L. Tarricone, "A cost-effective SDR platform for performance characterization of RFID tags," IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 4, 903-911, Apr. 2012.
doi:10.1109/TIM.2011.2174899

48. Catarinucci, L., D. De Donno, M. Guadalupi, F. Ricciato, and L. Tarricone, Performance analysis of passive UHF RFID tags with GNU-radio, Proc. IEEE International Symposium on Antennas and Propagation, APSURSI 2011, 541-544, Spokane, WA, 2011.

49. De Donno, D., L. Catarinucci, R. Colella, F. Ricciato, L. Tarricone, Differential RCS and sensitivity calculation of RFID tags with software-defined radio, Proc. IEEE Radio and Wireless Symposium, RWS 2012, 9-12, Santa Clara, CA, 2012.

50. Cataldo, A., G. Monti, E. De Benedetto, G. Cannazza, L. Tarricone, and L. Catarinucci, "Assessment of a TD-based method for characterization of antennas," IEEE Transactions on Instrumentation and Measurement, Vol. 58, No. 5, 1412-1419, 2009.
doi:10.1109/TIM.2008.2009199

51. Cataldo, A., G. Monti, E. De Benedetto, G. Cannazza, L. Tarricone, and L. Catarinucci, A comparative analysis of reflectometry methods for characterization of antennas, Proc. IEEE Int. Instrum. Meas. Technol. Conf., 240-243, Victoria, BC, Canada, 2008.

52. Cataldo, A., E. De Benedetto, G. Cannazza, and G. Monti, "A reliable low-cost method for accurate characterization of antennas in time domain," Metrology and Measurement Systems, Vol. 15, No. 4, 571-583, 2008.


© Copyright 2014 EMW Publishing. All Rights Reserved