PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 132 > pp. 479-498

PERFORMANCE EVALUATION OF UWB ON-BODY COMMUNICATION UNDER WIMAX OFF-BODY EMI EXISTENCE

By A.-M. Gao, Q. H. Xu, H.-L. Peng, W. Jiang, and Y. Jiang

Full Article PDF (635 KB)

Abstract:
A study of UWB on-body communication system performance, with the WiMax off-body electromagnetic interference (EMI) existence, is presented. Firstly, a compact UWB antenna with good on-body performance is verified and chosen as our reference antenna. Using this realistic antenna, channel transfer function (CTF) of UWB on-body channel in an indoor room is investigated by measurements. Based on the measured data, the parameters of its pathloss model and its power delay profile (PDP) model are extracted respectively. Secondly, a new body channel communication system model, composed of the on-body and off-body dual-link channel, together with UWB and WiMax signal models are presented. Finally, UWB on-body communication performances under different WiMax off-body EMI levels are studied by simulation. Simulated results show that this on-body system performance is quite limited and easily affected by the off-body WiMax EMI. It is pointed out that the existing UWB on-body communication abilities should be greatly improved when WiMax off-body EMI signals are considered.

Citation:
A.-M. Gao, Q. H. Xu, H.-L. Peng, W. Jiang, and Y. Jiang, "Performance Evaluation of UWB on-Body Communication Under WiMAX off -Body EMI Existence," Progress In Electromagnetics Research, Vol. 132, 479-498, 2012.
doi:10.2528/PIER12081905
http://www.jpier.org/PIER/pier.php?paper=12081905

References:
1. http://www.ieee802.org/15/pub/TG6.html.
doi:10.1587/transcom.E92.B.366

2. Astrin, A. W., H.-B. Li, and R. Kohno, "Standardization for body area networks," IEICE Trans. Commun., Vol. E92-B, No. 2, 366-372, Feb. 2009.

3. Kohno, R., K. Hamaguchi, H.-B. Li, and K. Takizawa, "R&D and standardization of body area network (BAN) for medical healthcare," Proc. IEEE Int. Conf. on Ultra-Wideband, (ICUWB), Vol. 3, 5-8, Sep. 2008.
doi:10.2528/PIER09062306

4. Chen, D. and C.-H. Cheng, "A novel compact ultra-wideband (UWB) wide slot antenna with via holes," Progress In Electromagnetics Research, Vol. 94, 343-349, 2009.
doi:10.1109/TAP.2009.2014577

5. Haga, N., K. Saito, M. Takahashi, and K. Ito, "Characteristics of cavity slot antenna for body-area networks," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 837-843, Apr. 2009.
doi:10.2528/PIER10102604

6. Gemio, J., J. Parron, and J. Soler, "Human body effects on implantable antennas for ISM bands applications: Models comparison and propagation losses study," Progress In Electromagnetics Research, Vol. 110, 437-452, 2010.
doi:10.2528/PIER11052005

7. Zhang, M. and A. Alden, "Calculation of whole-body SAR from a 100MHz dipole antenna," Progress In Electromagnetics Research, Vol. 119, 133-153, 2011.

8. Vidal, N., S. Curto, J. M. Lopez-Villegas, J. Sieiro, and F. M. Ramos, "Detuning study of implantable antennas inside the human body," Progress In Electromagnetics Research, Vol. 124, 265-283, 2011.
doi:10.2528/PIER10011908

9. Jin, X. and M. Ali, "Embedded antennas in dry and saturated concrete for application in wireless sensors," Progress In Electromagnetics Research, Vol. 102, 197-211, 2010.
doi:10.1109/TAP.2011.2164209

10. Smith, D. B., D. Miniutti, and L. W. Hanlen, "Characterization of the body-area propagation channel for monitoring a subject sleeping," IEEE Trans. Antennas Propag., Vol. 59, No. 11, 4388-4392, Nov. 2011.
doi:10.1587/transcom.E92.B.366

11. Astrin, A. W., H.-B. Li, and R. Kohno, "Standardization for body area networks," IEICE Trans. Commun., Vol. E92-B, No. 2, 366-372, Feb. 2009.

12. Abbasi, Q. H., A. Sani, A. Alomainy, and Y. Hao, Arm movements effect on ultra wideband on-body propagation channels and radio systems, Antennas Propag. Conf., 261-264.

13. Abbasi, Q., A. Alomainy, and Y. Hao, "Effect of human body movements on performance of multiband OFDM based ultra wideband wireless communication system ," Antennas Propag. Conf., 145-148, Loughborough, UK, Nov. 2010.
doi:10.1109/MCOM.2003.1215641

14. Porcino, D. and W. Hirt, "Ultra-wideband radio technology: Potential and challenges ahead," IEEE Commun. Mag., Vol. 41, No. 7, 66-74, Jul. 2003.
doi:10.1109/TMTT.2006.871993

15. Cardinali, R., L. D. Nardis, D. Benedetto, and M.-G. Lombardo, "UWB ranging accuracy in high- and low-data-rate applications," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1865-1875, Jun. 2006.
doi:10.1109/LAWP.2011.2172181

16. Azim, R., M. T. Islam, and N. Misran, "Compact tapered-shape slot antenna for UWB applications," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1190-1193, 2011.
doi:10.1109/TAP.2011.2109361

17. Chahat, N., M. Zhadobov, and R. Sauleau, "A compact UWB antenna for on-body applications," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1123-1131, Apr. 2011.
doi:10.2528/PIER10011905

18. Habib, M. A., A. Bostani, A. Djaiz, M. Nedil, M. C. E. Yagoub, and T. A. Denidni, "Ultra wideband CPW-FED aperture antenna with WLAN band rejection," Progress In Electromagnetics Research, Vol. 106, 17-31, 2010.

19. Xu, H.-Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011.

20. Li, C.-M. and L.-H. Ye, "Improved dual band-notched UWB slot antenna with controllable notched bandwidths," Progress In Electromagnetics Research, Vol. 115, 477-493, 2011.

21. Islam, M. T., R. Azim, and A. T. Mobashsher, "Triple band-notched planar UWB antenna using parasitic strips," Progress In Electromagnetics Research, Vol. 129, 161-179, 2011.
doi:10.2528/PIER10060208

22. Sim, C.-Y.-D., W.-T. Chung, and C.-H. Lee, "Planar UWB antenna with 5 GHz band rejection switching function at ground plane," Progress In Electromagnetics Research, Vol. 106, 321-333, 2010.
doi:10.2528/PIER10011604

23. Hu, Y.-S., M. Li, G.-P. Gao, J.-S. Zhang, and M.-K. Yang, "A double-printed trapezoidal patch dipole antenna for UWB applications with band-notched characteristic," Progress In Electromagnetics Research, Vol. 103, 259-269, 2010.
doi:10.1109/TAP.2009.2014526

24. Wang, Q., T. Tayamachi, and I. Kimura, "An on-body channel model for UWB body area communications for various postures," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 991-998.
doi:10.1109/TMTT.2006.872072

25. Zhao, Y., Y. Hao, A. Alomainy, and C. Parini, "UWB on-body radio channel modeling using ray theory and subband FDTD method," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1827-1835, Apr. 2006.
doi:10.1109/TAP.2009.2024969

26. Sani, A., A. Alomainy, G. Palikaras, and Y. Nechayev, "Experimental characterization of UWB on-body radio channel in indoor environment considering different antennas," IEEE Trans. Antennas Propag., Vol. 58, No. 1, 238-241, Jan. 2010.

27. Takizawa, K., T. Aoyagi, and R. Kohno, "Channel modeling and performance evaluation of UWB-based wireless body area networks," Proc. IEEE ICC, 1-5, 2009.

28. Hernandez, M. and R. Kohno, Coexistence of UWB-BANs with other wireless systems, Proc. IEEE Int. Conf. on Intelligent Signal Processing and Communication Systems, (ISPACS), 135-137, Jan. 2009.
doi:10.2528/PIER09011601

29. You, Y. H. and J. B. Kim, "Pilot and data symbol-aided frequency ESTI-mation for UWB-OFDM," Progress In Electromagnetics Research, Vol. 90, 205-217, 2009.

30. Chen, Z. and Y.-P. Zhang, "Effects of antennas and propagation channels on synchronization performance of a pulse-based ultra-wideband radio system," Progress In Electromagnetics Research, Vol. 115, 95-112, 2011.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.


© Copyright 2014 EMW Publishing. All Rights Reserved