PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 134 > pp. 23-46

AN IMPROVED SCHEME FOR PARAMETER ESTIMATION OF G° DISTRIBUTION MODEL IN HIGH-RESOLUTION SAR IMAGES

By J. Cheng, G. Gao, W. Ding, X. Ku, and J. Sun

Full Article PDF (652 KB)

Abstract:
Statistical modeling of Synthetic Aperture Radar (SAR) images is of great importance for speckle noise filtering, target detection and classification, etc. Moreover, it can provide a comprehensive understanding of terrain electromagnetics scattering mechanism. Over the past three decades, many sophisticated models have been developed for SAR images, such as Rayleigh, Gamma, K and G, etc. The G° distribution is a special form of the G model, which can model the speckle fluctuations of many classes of objects like homogeneous, heterogeneous and extremely heterogeneous ones, and is widely used in SAR images interpretation. However, as many improvements have been performed on SAR sensors, the traditional parameter estimation methods of the G° distribution may be not sufficient, notably in high resolution SAR images. They cannot arrive at a solution frequently when modeling regions in high resolution SAR images, especially the extremely homogeneous regions. In order to deal with this problem, this paper proposes an improved parameter estimation scheme of the G° distribution, which combines the classical moment estimation with the mellin transform. To quantitatively assess the fitting precision of the proposed method, we adopt the Kullback-Leibler (KL) distance, Kolmogorov-Smirnov (KS) test and Mean Square Error (MSE) as similarity measurements. The advantage of this proposed parameter estimation method becomes evident through the analysis of a variety of areas (ground, vegetation, trees and buildings) in two high resolution SAR images.

Citation:
J. Cheng, G. Gao, W. Ding, X. Ku, and J. Sun, "An Improved Scheme for Parameter Estimation of g ° Distribution Model in High-Resolution SAR Images," Progress In Electromagnetics Research, Vol. 134, 23-46, 2013.
doi:10.2528/PIER12082308
http://www.jpier.org/PIER/pier.php?paper=12082308

References:
1. Koo, V. C., Y. K. Chan, V. Gobi, M. Y. Chua, C. H. Lim, C. S. Lim, C. C. Thum, T. S. Lim, Z. Bin Ahmad, K. A. Mahmood, M. H. Bin Shahid, C. Y. Ang, W. Q. Tan, P. N. Tan, K. S. Yee, W. G. Cheaw, H. S. Boey, A. L. Choo, and B. C. Sew, "A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring," Progress In Electromagnetics Research, Vol. 122, 245-268, 2012.
doi:10.2528/PIER11092604

2. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101

3. Mohammadpoor, M., R. S. A. Raja Abdullah, A. Ismail, and A. F. Abas, "A circular synthetic aperture radar for on-the-ground object detection," Progress In Electromagnetics Research, Vol. 122, 269-292, 2012.
doi:10.2528/PIER11082201

4. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

5. Park, S. H., J. H. Lee, and K. T. Kim, "Performance analysis of the scenario-based construction method for real target ISAR recognition," Progress In Electromagnetics Research, Vol. 128, 137-151, 2012.

6. Chang, Y.-L., C.-Y. Chiang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

7. Park, J.-I. and K.-T. Kim, "A comparative study on ISAR imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901

8. Zhao, Y. W., M. Zhang, X. P. Geng, and P. Zhou, "A comprehensive facet model for bistatic SAR imagery of dynamic ocean scene," Progress In Electromagnetics Research, Vol. 123, 427-445, 2012.
doi:10.2528/PIER11100910

9. Albert, M. D., Y. J. Lee, H. T. Ewe, and H. T. Chuah, "Multilayer model formulation and analysis of radar backscattering from sea ice," Progress In Electromagnetics Research, Vol. 128, 267-290, 2012.

10. Dusseaux, R., E. Vannier, O. Taconet, and G. Granet, "Study of backscatter signature for seedbed surface evolution under rainfall-in°uence of radar precision," Progress In Electromagnetics Research, Vol. 125, 415-437, 2012.
doi:10.2528/PIER11102807

11. Feng, L., H. Xu, C.-S. Li, S. Li, and H. Gao, "A novel estimation approach of dynamic and coupling baseline for distributed satellite SAR," Progress In Electromagnetics Research, Vol. 123, 467-484, 2012.
doi:10.2528/PIER11083105

12. Bausssard, A., M. Rochdi, and A. Khenchaf, "Po/mec-based scattering model for complex objects on a sea surface," Progress In Electromagnetics Research, Vol. 111, 229-251, 2011.
doi:10.2528/PIER10083005

13. Jin, Y. Q., "Polarimetric scattering modeling and information retrieval of SAR remote sensing - A review of FDU work," Progress In Electromagnetics Research, Vol. 104, 333-384, 2010.
doi:10.2528/PIER10020101

14. Liu, D., D., Y. Du, G. Sun, W.-Z. Yan, and B.-I. Wu, "Analysis of InSAR sensitivity to forest structure based on radar scattering model," Progress In Electromagnetics Research, Vol. 84, 149-171, 2008.
doi:10.2528/PIER08071802

15. Du, Y., Y. Luo, W.-Z. Yan, and J. A. Kong, "An electromagnetic scattering model for soybean canopy," Progress In Electromagnetics Research, Vol. 79, 209-223, 2008.
doi:10.2528/PIER07101603

16. Frery, A. C., H. J., Muller, C. D. Costa, C. D. C. F. Yanasse, and S. J. S. Sant' Anna, "A model for extremely heterogeneous clutter," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 3, 648-659, 1997.
doi:10.1109/36.581981

17. Gao, G., "Statistical modeling of SAR images: A survey," Sensors, Vol. 10, 775-795, 2010.
doi:10.3390/s100100775

18. Bruzzone, J., M. Marconcini, U. Wegmuller, and A. Wiesmann, "An advanced system for the automatic classification of multitemporal SAR images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 6, 1321-1334, 2004.
doi:10.1109/TGRS.2004.826821

19. Luo, M. and K.-M. Huang, "Prediction of the electromagnetic field in metallic enclosures using artificial neural networks," Progress In Electromagnetics Research, Vol. 116, 171-184, 2011.

20. O'Halloran, M., B. McGinley, R. C. Conceicao, F. Morgan, E. Jones, and M. Glavin, "Spiking neural networks for breast cancer classification in a dielectrically heterogeneous breast," Progress In Electromagnetics Research, Vol. 113, 413-428, 2011.

21. Zaharis, Z. D., K. A. Gotsis, and J. N. Sahalos, "Comparative study of neural network training applied to adaptive beamforming of antenna arrays," Progress In Electromagnetics Research B, Vol. 126, 269-283, 2012.

22. Zaharis, Z. D., K. A. Gotsis, and J. N. Sahalos, "Adaptive beamforming with low Side lobe level using neural networks trained by mutated boolean PSO," Progress In Electromagnetics Research, Vol. 127, 139-154, 2012.
doi:10.2528/PIER12022806

23. Mantero, P., "Partially supervised classification of remote sensing images using SVM-based probability density estimation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 3, 559-570, 2005.
doi:10.1109/TGRS.2004.842022

24. Tan, C.-P., J.-Y. Koay, K.-S. Lim, H.-T. Ewe, and H.-T. Chuah, "Classification of multi-temporal SAR images for rice crops using combined entropy decomposition and support vector machine technique," Progress In Electromagnetics Research, Vol. 71, 19-39, 2007.
doi:10.2528/PIER07012903

25. Gao, G., "A parzen-window-kernel-based CFAR algorithm for ship detection in SAR images," IEEE Geoscience and Remote Sensing Letters, Vol. 8, No. 3, 557-561, 2011.
doi:10.1109/LGRS.2010.2090492

26. Oliver, C. J., Understanding Synthetic Aperture Radar Images, Artech House, Boston, London, USA, UK, 1998.

27. Moser, G. J., S. Zerubia, and B. Serpico, "Dictionary-based stochastic expectation - Maximization for SAR amplitude probability density function estimation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 1, 188-200, 2006.
doi:10.1109/TGRS.2005.859349

28. Joughin, I. R., "Maximum likelihood estimation of K distribution parameters for SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 31, No. 5, 989-999, 1993.
doi:10.1109/36.263769

29. Freitas, C. C., A. C. Frery, and A. H. Correia, "The polarimetric G distribution for SAR data," Environmetries, Vol. 16, No. 1, 13-31, 2005.
doi:10.1002/env.658

30. Allende, H., A. C. Frery, J. Galbiati, and L. Pizarro, "M-estimators with asymmetric influence functions: The G0 distribution case," Journal of Statistical Computation and Simulation, Vol. 76, No. 11, 941-956, 2006.
doi:10.1080/10629360600569154

31. Liu, Z. L. and J. Yang, "Analysis of electromagnetic scattering with higher-order moment method and NURBS model," Progress In Electromagnetics Research, Vol. 96, 83-100, 2009.
doi:10.2528/PIER09071704

32. Hatamzadeh-Varmazyar, S. H., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.
doi:10.2528/PIER07122502

33. Wang, S., X. Guan, D. W. Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higher-order MoM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101

34. Shi, G. T., G. Gao, X. G. Zhou, G. Y. Kuang, and Y. M. Jiang, "Parameter estimation of G0 distribution based on Mellin transform," Progress in Natural Science, Vol. 19, No. 6, 677-690, 2009.
doi:10.1016/j.pnsc.2008.08.010

35. Tison, C., J. M. Nicolas, F. Tupin, and H. Maître, "A new statistical model for Markovian classification of urban areas in high-resolution SAR images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 10, 2046-2057, 2004.
doi:10.1109/TGRS.2004.834630

36. Cover, T. M. and J. A. Thomas, Elements of Information Theory, Wiley Interscience, New York, 1991.

37. DeVore, M. D. and J. A. O'Sullivan, "Quantitative statistical assessment of conditional models for synthetic aperture radar," IEEE Transactions on Image Processing, Vol. 13, No. 2, 113-125, 2004.
doi:10.1109/TIP.2004.823825

38. Yueh, S. H., J. A. Kong, J. K. Jao, R. T. Shin, H. A. Zebker, T. Le Toan, and H. Öttl, "K-distribution and polarimetric terrain radar clutter," Progress In Electromagnetics Research, Vol. 3, 237-257, 1990.


© Copyright 2014 EMW Publishing. All Rights Reserved