Vol. 133
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-11-12
Nonlocal Effects on Surface Enhanced Raman Scattering from Bimetallic Coated Nanoparticles
By
Progress In Electromagnetics Research, Vol. 133, 591-605, 2013
Abstract
We study the surface enhanced Raman scattering (SERS) from bimetallic core-shell nanoparticles by taking into account the nonlocal effect. The Gersten-Nitzan model is applied to investigate SERS from a molecule adsorbed on the nonlocal bimetallic nanoparticle. Numerical results show that there are two enhanced SERS peaks for bimetallic coated nanoparticles, and nonlocal effects will lead to less enhancement and blue-shift of SERS peaks. In addition, unusual resonant electric-field patterns are found in the nonlocal gold core in comparison with those in the local case. Our investigation is helpful for understanding some details of SERS schemes in nano-optics and plasmonics when nonlocal effects are considered.
Citation
Yang Huang, and Lei Gao, "Nonlocal Effects on Surface Enhanced Raman Scattering from Bimetallic Coated Nanoparticles," Progress In Electromagnetics Research, Vol. 133, 591-605, 2013.
doi:10.2528/PIER12091217
References

1. Fleischmann, M., P. J. Hendra, and A. Mcquilla, "Raman spectra of pyridine adsorbed at a silver electrode," Chem. Phys. Lett., Vol. 26, 163-166, 1974.
doi:10.1016/0009-2614(74)85388-1

2. Tian, Z. Q. and B. Ren, "Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy," Annu. Rev. Phys. Chem., Vol. 55, 197-229, 2004.
doi:10.1146/annurev.physchem.54.011002.103833

3. Wustholz, K. L., C. L. Brosseau, F. Casadio, and R. P. van Duyne, "Surface-enhanced Raman spectroscopy of dyes: From single molecules to the artists canvas," Physical Chemistry Chemical Physics, Vol. 11, 7350-7359, 2009.
doi:10.1039/b904733f

4. Stiles, P. L., F. A. Dieringer, N. C. Shah, and R. P. van Duyne, "Surface-enhanced Raman spectroscopy," Annu. Rev. Anal. Chem., Vol. 1, 601-626, 2008.
doi:10.1146/annurev.anchem.1.031207.112814

5. Cao, Y. C., R. Jin, and C. A. Mirkin, "Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection," Science, Vol. 297, 1536-1540, 2002.
doi:10.1126/science.297.5586.1536

6. Nie, S. and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science, Vol. 275, 1102-1106, 1997.
doi:10.1126/science.275.5303.1102

7. Kneipp, K., Y. Wang, H. Kneipp, T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett., Vol. 78, 1667-1670, 1997.
doi:10.1103/PhysRevLett.78.1667

8. Emel'yanov, V. and T. V. Koroteev, "Giant Raman scattering of light by molecules adsorbed on the surface of a metal," Sov. Phys. Usp., Vol. 24, 864-873, 1981.
doi:10.1070/PU1981v024n10ABEH004812

9. Pustovit, V. N. and T. V. Shahbazyan, "Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles," Phys. Rev. B, Vol. 73, 085408, 2006.
doi:10.1103/PhysRevB.73.085408

10. Kerker, M., D. S. Wang, and H. Chew, "Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: Errata," Appl. Opt., Vol. 19, 4159-4174, 1980.
doi:10.1364/AO.19.004159

11. Gersten, J. and A. Nitzan, "Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces," J. Chem. Phys., Vol. 73, 3023-3037, 1980.
doi:10.1063/1.440560

12. Schatz, G. C. and R. P. van Duyne, Electromagnetic mechanism of surface-enhanced spectroscopy, Handbook of Vibrational Spectroscopy, John Wiley and Sons, Ltd., 2006.

13. Xu, H. X., X. H. Wang, M. P. Persson, and H. Q. Xu, "Unified treatment of °uorescence and Raman scattering processes near metal surfaces," Phys. Rev. Lett., Vol. 93, 243002, 2004.
doi:10.1103/PhysRevLett.93.243002

14. Yin, Y. D., L. Gao, and C. W. Qiu, "Electromagnetic theory of tunable SERS manipulated with spherical anisotropy in coated nanoparticles," J. Phys. Chem. C, Vol. 115, 8893-8899, 2011.
doi:10.1021/jp111141b

15. Shalabney, A., C. Khare, J. Bauer, B. Rauschenbach, and I. Abdulhalim, "Detailed study of surface-enhanced Raman scattering from metallic nanosculptured thin films and their potential for biosensing," J. Nanophoton., Vol. 6, No. 1, 061605, 2012.
doi:10.1117/1.JNP.6.061605

16. Höfich, K., "Plasmonic dimer antennas for surface enhanced Raman scattering," Nanotechnology, Vol. 23, 185303, 2012.
doi:10.1088/0957-4484/23/18/185303

17. Wang, X. T. and W. S. Shi, "Surface-enhanced Raman scattering (SERS) on transition metal and semiconductor nanostructures," Physical Chemistry Chemical Physics, Vol. 14, 5891-5901, 2012.
doi:10.1039/c2cp40080d

18. McMahon, J. M., S. K. Gray, and G. C. Schatz, "Nonlocal optical response of metal nanostructures with arbitrary shape," Phys. Rev. Lett., Vol. 103, 097403, 2009.
doi:10.1103/PhysRevLett.103.097403

19. Mikki, S. M. and A. A. Kishk, "Electromagnetic wave propagation in non-local media --- Negative group velocity and beyond," Progress In Electromagnetics Research B, Vol. 14, 149-174, 2009.
doi:10.2528/PIERB09031911

20. Ruppin, R., "Optical properties of a plasma sphere," Phys. Rev. Lett., Vol. 31, 1434-1437, 1973.
doi:10.1103/PhysRevLett.31.1434

21. Raza, S., M. Wubs, and N. A. Mortensen, "Unusual resonances in nanoplasmonic structures due to nonlocal response," Phys. Rev. B, Vol. 84, 121412, 2011.
doi:10.1103/PhysRevB.84.121412

22. Dasgupta, B. B. and R. Fuchs, "Polarizability of a small sphere including nonlocal effects," Phys. Rev. B, Vol. 24, 554-561, 1981.
doi:10.1103/PhysRevB.24.554

23. Leung, P. T. and W. S. Tse, "Nonlocal electrodynamic effect on the enhancement factor for surface enhanced Raman scattering," Solid State Commun., Vol. 95, 39-44, 1995.
doi:10.1016/0038-1098(95)00144-1

24. Chang, R. and P. T. Leung, "Nonlocal effects on optical and molecular interactions with metallic nanoshells," Phys. Rev. B, Vol. 73, 125438, 2006.
doi:10.1103/PhysRevB.73.125438

25. Xie, H. Y., H. Y. Chung, P. T. Leung, and D. P. Tsai, "Plasmonic enhancement of FÄorster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects," Phys. Rev. B, Vol. 80, 155448, 2009.
doi:10.1103/PhysRevB.80.155448

26. Chung, H. Y., G. Y. Guo, H. P. Chiang, D. P. Tsai, and P. T. Leung, "Accurate description of the optical response of a multilayered spherical system in the long wavelength approximation," Phys. Rev. B, Vol. 82, 165440, 2010.
doi:10.1103/PhysRevB.82.165440

27. Bruzzone, S., M. Malvaldi, G. P. Arrighini, and C. Guidotti, "Near-field and far-field scattering by bimetallic nanoshell systems," J. Phys. Chem. B, Vol. 110, 11050-11054, 2006.
doi:10.1021/jp061668o

28. Wu, D. J., X. D. Xu, and X. J. Liu, "Electric field enhancement in bimetallic gold and silver nanoshells," Solid State Commun., Vol. 148, 163-167, 2008.
doi:10.1016/j.ssc.2008.07.030

29. Rojas, R., F. Claro, and R. Fuchs, "Nonlocal response of a small coated sphere," Phys. Rev. B, Vol. 37, 6799-6807, 1988.
doi:10.1103/PhysRevB.37.6799

30. Fan, C. Z., J. P. Huang, and K. W. Yu, "Dielectrophoresis of an inhomogeneous colloidal particle under an inhomogeneous field: A first-principles approach," J. Phys. Chem. B, Vol. 110, 25665-25670, 2006.
doi:10.1021/jp062397k

31. Westcott, S. L., J. B. Jackson, C. Radloff, and N. J. Halas, "Relative contributions to the plasmon line shape of metal nanoshells," Phys. Rev. B, Vol. 66, 155431, 2002.
doi:10.1103/PhysRevB.66.155431

32. Steinbruck, A., A. Csaki, G. Festag, and W. Fritzsche, "Preparation and optical characterization of core-shell bimetal nanoparticles," Plasmonics, Vol. 1, 79, 2006.
doi:10.1007/s11468-005-9000-5

33. Goude, Z. E. and P. T. Leung, "Surface enhanced Raman scattering from metallic nanoshells with nonlocal dielectric response," Solid State Commun., Vol. 143, 416-420, 2007.
doi:10.1016/j.ssc.2007.06.015

34. Prodan, E., C. Radlo®, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, 419-422, 2003.
doi:10.1126/science.1089171

35. Li, B. Q. and C. H. Liu, "Long-wave approximation for hybridization modeling of local surface plasmonic resonance in nanoshells," Opt. Lett., Vol. 36, 247-249, 2011.
doi:10.1364/OL.36.000247

36. Colas des Francs, G., "Molecule non-radiative coupling to a metallic nanosphere: An optical theorem treatment," Int. J. Mol. Sci., Vol. 10, 3931-3936, 2009.
doi:10.3390/ijms10093931

37. Pavan Kumar, G. V., S. Shruthi, B. Vibha, B. A. Ashok Prddy, T. K. Kundu, and C. Narayana, "Hot spots in Ag core-Au shell nanoparticles potent for surface-enhanced Raman scattering studies of biomolecules," J. Phys. Chem. C, Vol. 111, 4388-4392, 2007.
doi:10.1021/jp068253n

38. Anger, P., P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett., Vol. 96, 113002, 2006.
doi:10.1103/PhysRevLett.96.113002