PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 135 > pp. 105-122

A MULTI-SCALE LOCAL PHASE QUANTIZATION PLUS BIOMIMETIC PATTERN RECOGNITION METHOD FOR SAR AUTOMATIC TARGET RECOGNITION

By Y. Zhai, J. Li, J. Gan, and Z. Ying

Full Article PDF (660 KB)

Abstract:
Synthetic aperture radar (SAR) automatic target recognition (ATR) has been receiving more and more attention in the past two decades. But the problem of how to overcome SAR target ambiguities and azimuth angle variations has still left unsolved. In this paper, a multi-scale local phase quantization plus biomimetic pattern recognition (BPR) method is presented to solve these two difficuties. By applying multiple scales local phase quantization (LPQ) on the observed SAR images, the blur and azimuth invariant features can be extracted, and these features are fusion with consecutive multiple scales to achieve better results. Then PCA method is applied to further reduce the feature dimension and achieve its efficiency. Finally, high dimensional space geometry covering method based on BPR theory is adopted to construct hyper sausage neuron links for target recognition. Experiments on the MSTAR database show that the proposed method can achieve satisfying recognition accuracy compared with other state-of-the-art methods.

Citation:
Y. Zhai, J. Li, J. Gan, and Z. Ying, "A Multi-Scale Local Phase Quantization Plus Biomimetic Pattern Recognition Method for SAR Automatic Target Recognition," Progress In Electromagnetics Research, Vol. 135, 105-122, 2013.
doi:10.2528/PIER12100301
http://www.jpier.org/PIER/pier.php?paper=12100301

References:
1. Huan, , R. and Y. Pan, "Decision fusion strategies for SAR image target recognition," IET Radar, Sonar and Navigation, Vol. 5, No. 7, 747-755, 2011.
doi:10.1049/iet-rsn.2010.0319

2. Lee, , J.-H., , S.-W. Cho, S.-H. Park, and K.-T. Kim, "Performance analysis of radar target recognition using natural frequency: Frequency domain approach, ," Progress In Electromagnetics Research,, Vol. 132, 315-345, 2012.

3. Varshney, , K. R., , M. Cetin, J. W. Fisher, and A. S. Willsky, "Sparse representation in structured dictionaries with application to synthetic aperture radar," IEEE Transactions on Signal Processing, Vol. 56, No. 8, 3548-3560, 2008.
doi:10.1109/TSP.2008.919392

4. Chang, , Y. L., C. Y. Chiang, and K. S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

5. Park, , S. H., K. K. Park, J. H. Jung, H. T. Kim, and K. T. Kim, "Construction of training database based on high frequency RCS prediction methods for ATR," Journal of Electromagnetic Waves Applications, Vol. 22, No. 5--6, 693-703, 2008.
doi:10.1163/156939308784159390

6. Chan, S. C. , K. C. Lee, and , "Radar target identification by kernel principal component analysis on RCS," Journal of Electromagnetic Waves Applications, Vol. 26, No. 1, 64-74, 2012.
doi:10.1163/156939312798954900

7. Huang, , C. W. , K. C. Lee, and , "Frequency-diversity RCS based target recognition with ICA projection," Journal of Electromagnetic Waves Applications, Vol. 24, No. 17--18, 2547-2559, 2010.
doi:10.1163/156939310793675763

8. Jung, , J. H. and H. T. Kim, "Comparisons of four feature extraction approaches based on fisher's linear discriminant criterion in radar target recognition," Journal of Electromagnetic Waves Applications, Vol. 21, No. 2, 251-256, 2007.
doi:10.1163/156939307779378781

9. Sabry, R. , P. W. Vachon, and , "A spectral domain approach to modelling of EM scattering for synthetic aperture radar target recognition," Journal of Electromagnetic Waves Applications , Vol. 15, No. 6, 745-753, 2001.
doi:10.1163/156939301X00986

10. Seo, , D. K., , K. T. Kim, I. S. Choi, and H. T. Kim, "Wide-angle radar target recognition with subclass concept, ," Progress In Electromagnetics Research, Vol. 44, 231-248, 2004.
doi:10.2528/PIER03060301

11. Lee, , K. C., , C. W. Huang, and M. C. Fang, "Radar target recognition by projected features of frequency-diversity RCS," Progress In Electromagnetics Research, Vol. 81, 121-133, 2008.
doi:10.2528/PIER08010206

12. Han, , S. K., H. T. Kim, S. H. Park, and K. T. Ki, "Effcient radar target recognition using a combination of range profile and time-frequency analysis," Progress In Electromagnetics Research, Vol. 108, 131-140, 2010.
doi:10.2528/PIER10071601

13. Lee, , K. C., J. S. Ou, and M. C. Fang, "Application of svd noise-reduction technique to PCA based radar target recognition," Progress In Electromagnetics Research,, Vol. 81, 447-459, 2008.
doi:10.2528/PIER08032101

14. Huang, , C. W. and K. C. Lee, "Application of ICA technique to PCA based radar target recognition," Progress In Electromagnetics Research, Vol. 105, 157-170, 2010.
doi:10.2528/PIER10042305

15. Lee, , K. C., , J. S. Ou, and C. W. Huang, , "Angular-diversity radar recognition of ships by transformation based approaches --- Including noise effects," Progress In Electromagnetics Research,, Vol. 72, 145-158, 2007.
doi:10.2528/PIER07030901

16. Park, , S. H., , J. H. Lee, and K. T. Kim, , "Performance analysis of the scenario-based construction method for real target ISAR recognition," Progress In Electromagnetics Research,, Vol. 128, 137-151, 2012.

17. Ross, , T. D., , S. W. Worrell, V. J. Velten, J. C. Mossing, and M. L. Bryant, "Standard SAR ATR evaluation experiment using the MSTAR public release data set," SPIE Conf. on Algorithms for SAR,, Vol. 3370, 556-573, 1998.

18. Zhou, , J. X, Z. G. Shi, X. Chen, and Q. Fu, "Automatic target recognition of SAR images based on global scattering center model," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 10, 3713-3729, 2011.
doi:10.1109/TGRS.2011.2162526

19. Han, , P., R. B. Wu, Y. H. Wang, and Z. H. Wang, "An effcient SAR ATR approach," Proc. of IEEE ICASSP, Vol. 2, 429-432, 2003.

20. Zhang, , H. C., , N. M. Nasrabadi, Y. N. Zhang, and T. S. Huang, "Multi-view automatic target recognition using joint sparse representation," IEEE Transactions on Aerospace and Electronics Systems,, Vol. 48, No. 3, 2481-2497, 2012.
doi:10.1109/TAES.2012.6237604

21. Zhao, , Q. , J. C. Principe, and , "Support vector machines for SAR automatic target recognition," IEEE Transactions on Aerospace and Electronics Systems, Vol. 37, No. 2, 643-654, 2001.
doi:10.1109/7.937475

22. Sun, , Y. J., , Z. P. Liu, S. Todorovic, and J. Li, "Adaptive boosting for SAR automatic target recognition," IEEE Transactions on Aerospace and Electronics Systems,, Vol. 43, No. 1, 112-124, 2007.
doi:10.1109/TAES.2007.357120

23. Wang, , S. J., "Biomimetic pattern recognition --- A new model of pattern recognition theory and its application," Acta Electronicapattern recognition theory and its application," Acta Electronica Sinica, Vol. 30, No. 10, 2258-2262, 2002.

24. Wang, , S. J. and X. T. Zhao, "Biomimetic pattern recognition theory and its application," Chinese Journal of Electronics, , Vol. 13, No. 3, 373-377, 2004.

25. Zhang, , Z. , Z. S. Wang, and , "On suppressing azimuth ambiguities of synthetic aperture radar by three filters," Proc. CIE | Int. Conf. Radar,, 624-626, 2001.
doi:10.1109/LGRS.2012.2187271

26. Villano, , M. , G. Krieger, and , "Impact of azimuth ambiguities on Interferometric performance," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 5, 896-900, 2012.
doi:10.1109/TGRS.2004.842476

27. Guarnieri, , A. M., "Adaptive removal of azimuth ambiguities in SAR images," IEEE Transactions on Geoscience and Remote Sensing, , Vol. 43, No. 3, 625-633, 2005.
doi:10.1109/TAES.1983.309319

28. Li, , F. K. , W. K. T. Johnson, and , "Ambiguities in spaceborn synthetic aperture radar systems," IEEE Transactions on Aerospace and Electronic Systems,, Vol. 19, No. 3, 389-397, 1983.
doi:10.1007/s11432-012-4614-7

29. Yu, , Z. , M. Liu, and , "Suppressing azimuth ambiguity in spaceborne SAR images based on compressed sensing," Science China --- Information Science,, Vol. 55, No. 8, 1830-1837, 2012.
doi:10.1007/978-3-540-69905-7_27

30. Ojansivu, , V. , J. Heikkila, and , "Blur insensitive texture classification using local phase quantization," International Conference on Image and Signal Processing, Lecture Notes in Computer Science, , Vol. 5099, 236-243, 2008.

31. Chan, C. H., J. Kittler, N. Poh, T. Ahonen, and M. Pietikainen, "(Multiscale) Local phase quantization histigram discriminant analysis with score normalisation for robust face recognition," Workshop on Video-oriented Object and Event Classi¯cation, in Conjunction with IEEE Conference on Computer Vision, , 633-640, 2009.

32. Zhen, , L. , S. Z. Li, and , "Fast multi-scale local phase quantization histogram for face recognition," Pattern Recognition Letters, , Vol. 33, 1761-1767, 2012.

33. Rahtu, , E., , J. Heikkila, V. Ojansivu, and T. Ahonen, "Local phase quantization for blur-insensitive image analysis," Image and Vision Computing,, 2012.
doi:10.1016/j.imavis.2012.04.001.


© Copyright 2014 EMW Publishing. All Rights Reserved