PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 134 > pp. 455-474

MULTI-FEATURE BASED DETECTION OF LANDMINES USING GROUND PENETRATING RADAR

By K. Park, S. Park, K. Kim, and K. H. Ko

Full Article PDF (831 KB)

Abstract:
In this paper, we present a method for detecting anti-tank or anti-personnel landmines buried in the ground. A set of data generated by a ground penetrating radar is processed to remove the surface reflection and clutter, yielding signals for possible landmines. In order to detect landmines in the signals, features are computed and compared against a database, which contains those of various landmines. Three features are proposed to use; principal components from principal component analysis, Fourier coefficients and singular values from singular value decomposition method, each of which is chosen to represent each landmine uniquely. Detection is performed using Mahalanobis distance-based method. Examples show that the proposed method can effectively detect landmines in various burial condition.

Citation:
K. Park, S. Park, K. Kim, and K. H. Ko, "Multi-Feature Based Detection of Landmines Using Ground Penetrating Radar," Progress In Electromagnetics Research, Vol. 134, 455-474, 2013.
doi:10.2528/PIER12100405
http://www.jpier.org/PIER/pier.php?paper=12100405

References:
1. Robledo, L., M. Carrasco, and D. Mery, "A survey of land mine detection technology," Int. J. Remote Sens., Vol. 30, No. 9, 2399-2410, 2009.
doi:10.1080/01431160802549435

2. Ho, K. C. and P. D. Gader, "A linear prediction land mine detection algorithm for hand held ground penetrating radar," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 6, 1374-1384, 2002.
doi:10.1109/TGRS.2002.800276

3. Tran, M. D. J., C. Abeynayake, L. C. Jain, and C. P. Lim, "An automated decision system for landmine detection and classification using metal detector signals," Stud. Comput. Intell., Vol. 304, 175-200, 2010.
doi:10.1007/978-3-642-14084-6_7

4. Collins, L., P. Gao, D. Schofield, J. Moulton, L. Makowsky, D. Reidy, and R. A. Weaver, "Statistical approach to landmine detection using broadband electromagnetic induction data," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 4, 950-962, 2002.
doi:10.1109/TGRS.2002.1006387

5. Won, I. J., D. A. Keiswetter, and T. H. Bell, "Electromagnetic induction spectroscopy for clearing landmines," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 4, 703-709, 2001.
doi:10.1109/36.917876

6. Tiwari, K. C., D. Singh, and M. K. Arora, "Development of a model for detection and estimation of depth of shallow buried non-metallic landmine at microwave x-band frequency," Progress In Electromagnetics Research, Vol. 79, 225-250, 2008.
doi:10.2528/PIER07100201

7. Alshehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah, R. Mahmood, and Z. Awang, "Experimental breast tumor detection using NN-based UWB imaging," Progress In Electromagnetics Research , Vol. 111, 447-465, 2011.
doi:10.2528/PIER10110102

8. Alshehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah, R. Mahmood, and Z. Awang, "3D experimental detection and discrimination of malignant and benign breast tumor using NN-based UWB imaging system," Progress In Electromagnetics Research, Vol. 116, 221-237, 2011.

9. O'Halloran, M., B. McGinley, R. C. Conceicao, F. Morgan, E. Jones, and M. Glavin , "Spiking Neural Networks for breast cancer classification in a dielectrically heterogeneous breast," Progress In Electromagnetics Research, Vol. 113, 413-428, 2011.

10. Chang, Y.-L., C.-Y. Chiang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507

11. Jia, Y., L. Kong, and X. Yang, "A novel approach to target localization through unknown walls for through-the-wall radar imaging," Progress In Electromagnetics Research, Vol. 119, 107-132, 2011.
doi:10.2528/PIER11052402

12. Burgos-Garcia, M., F. Perez-Martines, and J. Gismero Menoyo, "Radar signature of a helicopter illuminated by a long LFM signal," IEEE Trans. Aerosp. Electron. Syst., Vol. 45, 1104-1110, 2009.
doi:10.1109/TAES.2009.5259186

13. Davy, M., T. Lepetit, J. de Rosny, C. Prada, and M. Fink, "Detection and imaging of human beings behind a wall using the DORT method," Progress In Electromagnetics Research, Vol. 110, 353-369, 2010.
doi:10.2528/PIER10091703

14. Ray, P. and P. K. Varshney, "Radar target detection framework based on false discovery rate," IEEE Trans. Aerosp. Electron. Syst., Vol. 47, 1277-1292, 2011.
doi:10.1109/TAES.2011.5751258

15. Zhang, H., S. Y. Tan, and H. S. Tan, "Experimental study on a flanged parallel-plate dielectric waveguide probe for detection of buried inclusions," Progress In Electromagnetics Research, Vol. 111, 91-104, 2011.
doi:10.2528/PIER10110705

16. Debes, C., A. M. Zoubir, and M. G. Amin, "Enhanced detection using target polarization signatures in through-the-wall radar imaging," IEEE Trans. Geosci. Remote Sensing, Vol. 50, 1968-1979, 2012.
doi:10.1109/TGRS.2011.2170077

17. Mohammadpoor, M., R. S. A. Raja Abdullah, A. Ismail, and A. F. Abas, "A circular synthetic aperture radar for on-the-ground object detection," Progress In Electromagnetics Research, Vol. 122, 269-292, 2012.
doi:10.2528/PIER11082201

18. Hatam, M., A. Sheikhi, and M. A. Masnadi-Shirazi, "Target detection in Pulse-train MIMO radars applying ICA algorithms," Progress In Electromagnetics Research, Vol. 122, 413-435, 2012.
doi:10.2528/PIER11101206

19. Wang, Y., Q. Song, T. Jin, Y. Shi, and X.-T. Huang, "Sparse time-frequency representation based feature extraction method for landmine discrimination," Progress In Electromagnetics Research, Vol. 133, 459-475, 2013.

20. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

21. Guan, J., X.-L. Chen, Y. Huang, and Y. He, "Adaptive fractional Fourier transform-based detection algorithm for moving target in heavy sea clutter ," IET Radar, Sonar and Navig., Vol. 6, 389-401, 2012.
doi:10.1049/iet-rsn.2011.0030

22. Budillon, A., A. Evangelista, and G. Schirinzi, "GLRT detection of moving targets via multibaseline along-track interferometric SAR system," IEEE Geosci. Remote Sens. Lett., Vol. 9, 348-352, 2012.
doi:10.1109/LGRS.2011.2168381

23. Mao, X., D.-Y. Zhu, L. Ding, and Z.-D. Zhu, "Comparative study of RMA and PFA on their responses to moving target," Progress In Electromagnetics Research, Vol. 110, 103-124, 2010.
doi:10.2528/PIER10090607

24. Sjogen, T. K., V. T. Vu, M. I. Pettersson, A. Gustavsson, and L. M. H. Ulander, "Moving target relative speed estimation and refocusing in synthetic aperture radar images," IEEE Trans. Aerosp. Electron. Syst., Vol. 48, 2426-2436, 2012.
doi:10.1109/TAES.2012.6237601

25. Li, S., Y. Tian, G. Lu, Y. Zhang, H. J. Xue, J.-Q. Wang, and X.-J. Jing, "A new kind of non-acoustic speech acquisition method based on millimeter waveradar," Progress In Electromagnetics Research, Vol. 130, 17-40, 2012.

26. Crocco, L., F. Soldovieri, T. Millington, and N. J. Cassidy, "Bistatic tomographic GPR imaging for incipient pipeline leakage evaluation," Progress In Electromagnetics Research, Vol. 101, 307-321, 2010.
doi:10.2528/PIER09122206

27. Catapano, I., F. Soldovieri, and L. Crocco, "On the feasibility of the linear sampling method for 3D GPR surveys," Progress In Electromagnetics Research, Vol. 118, 185-203, 2011.
doi:10.2528/PIER11042704

28. Van den Bosch, I., S. Lambot, M. Acheroy, I. Huynen, and P. Druyts, "Accurate and efficient modeling of monostatic GPR signal of dielectric targets buried in stratified media," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 283-290, 2006.
doi:10.1163/156939306775701704

29. Zhu, Q. and L. M. Collins, "Application of feature extraction methods for landmine detection using the Wichmann/Niitek ground-penetrating radar," IEEE Trans. Geosci. Remote Sensing, Vol. 43, No. 1, 81-85, 2005.
doi:10.1109/TGRS.2004.839431

30. Van der Merwe, A. and J. Gupta, "A novel signal processing technique for clutter reduction in GPR measurements of small, shallow land mines," IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 6, 2627-2637, 2000.
doi:10.1109/36.885209

31. Nishimoto, M., S. Ueno, and Y. Kimura, "Feature extraction from GRP data for identification of landmine-like objects under rough ground surface," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1577-1586, 2006.
doi:10.1163/156939306779292318

32. Gader, P. D., M. Mystkowski, and Y. Zhao, "Landmine detection with ground penetrating radar using hidden Markov models," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 6, 1231-1244, 2001.
doi:10.1109/36.927446

33. Savelyev, T. G., L. van Kempen, H. Sahli, J. Sachs, and M. Sato, "Investigation of time-frequency features for GPR landmine discrimination," IEEE Trans. Geosci. Remote Sensing, Vol. 45, No. 1, 118-129, 2007.
doi:10.1109/TGRS.2006.885077

34. Ho, K. C., L. M. Collins, L. G. Huettel, and P. D. Gader, "Discrimination mode processing for EMI and GPR sensors for hand-held landmine detection," IEEE Trans. Geosci. Remote Sensing, Vol. 42, No. 1, 249-263, 2004.
doi:10.1109/TGRS.2003.817804

35. Lopera, O., E. C. Slob, N. Milisavljevic, and S. Lambot, "Filtering soil surface and antenna effects from GPR data to enhance landmine detection," IEEE Trans. Geosci. Remote Sensing, Vol. 45, No. 3, 707-717, 2007.
doi:10.1109/TGRS.2006.888136

36. Groenenboom, J. and A. Yarovoy, "Data processing and imaging in GPR system dedicated for landmine detection," Sub. Sens. Tech. App., Vol. 3, No. 4, 2002.

37. Nishimoto, M. and V. Jandieri, "Ground clutter reduction from GPR data for identification of shallowly buried landmines," IEICE Trans. Electron., Vol. E93-C, No. 1, 85-88, 2010.
doi:10.1587/transele.E93.C.85

38. Sun, Y. and J. Li, "Time-frequency analysis for plastic landmine detection via forward-looking ground penetrating radar," IEE Proc. - Radar Sonar Navig., Vol. 150, No. 4, 253-261, 2003.
doi:10.1049/ip-rsn:20030681

39. Tugac, S. and M. Efe, "Radar target detection using hidden Markov models," Progress In Electromagnetics Research B, Vol. 44, 241-259, 2012.

40. Wu, J. and M. Tian, "Landmine recognition research based on SVM," Chinese J. Sci. Inst., Vol. 30, No. 7, 1487-1491, 2009.

41. Wilson, J. N., P. Gader, W.-H. Lee, H. Frigui, and K. C. Ho, "A large-scale systematic evaluation of algorithms using ground-penetrating radar for landmine detection and discrimination," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 8, 2560-2572, 2007.
doi:10.1109/TGRS.2007.900993

42. Jang, G., K. Kim, and K. H. Ko, "Multi-feature based landmine identification using ground penetrating radar," 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 1-3, 2011.

43. Brunzell, H., "Detection of shallowly buried objects using impulse radar," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 2, 875-886, 1999.
doi:10.1109/36.752207

44. Iqbal, M., J. Chen, W. Yang, P. Wang, and B. Sun, "Kalman filter for removal of scalloping and inter-scan banding in scansar images," Progress In Electromagnetics Research, Vol. 132, 443-461, 2012.

45. Subrahmanyam, G. R. K. S., "A recursive filter for despeckling SAR Images," IEEE Trans. Image Process., Vol. 17, 1969-1974, 2008.
doi:10.1109/TIP.2008.2002160

46. Noh, S. Y., J. B. Park, and Y. H. Joo, "Intelligent tracking algorithm for maneuvering target using Kalman filter with fuzzy gain," IET Radar, Sonar and Navigation, Vol. 1, 241-247, 2007.

47. Pathirana, P. N. and A. V. Savkin, "Radar target tracking via robust linear filtering," IEEE Signal Process. Lett., Vol. 14, 1028-1031, 2007.
doi:10.1109/LSP.2007.907993

48. Yardim, C., P. Gerstoft, and W. S. Hodgkiss, "Tracking Refractivity from clutter using Kalman and particle filters," IEEE Trans. Antennas Propag., Vol. 56, 1058-1070, 2008.
doi:10.1109/TAP.2008.919205

49. Huang, C.-W. and K.-C. Lee, "Application of Ica technique to PCA based radar target recognition," Progress In Electromagnetics Research, Vol. 105, 157-170, 2010.
doi:10.2528/PIER10042305

50. Riaz, M. M. and A. Ghafoor, "Principle component analysis and fuzzy logic based through wall image enhancement," Progress In Electromagnetics Research, Vol. 127, 461-478, 2012.
doi:10.2528/PIER12012702

51. Zhang, Y., L. Wu, and S. Wang, "Magnetic resonance brain image classification by an improved artificial bee colony algorithm," Progress In Electromagnetics Research, Vol. 116, 65-79, 2011.

52. Zhang, Y. and L. Wu, "An Mr brain images classifier via principal component analysis and kernel support vector machine," Progress In Electromagnetics Research, Vol. 130, 369-388, 2012.

53. Chan, S.-C. and K.-C. Lee, "Radar target identification by kernel principal component analysis on RCS," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 1, 64-74, 2012.
doi:10.1163/156939312798954900

54. Wu, J., Z. Li, Y. Huang, Q. H. Liu, and J. Yang, "Processing one-stationary bistatic SAR data using inverse scaled Fourier transform," Progress In Electromagnetics Research, Vol. 129, 143-159, 2012.

55. Liu, Z., Q. H. Liu, C.-H. Zhu, and J. Yang, "A fast inverse polynomial reconstruction method based on conformal Fourier transformation," Progress In Electromagnetics Research, Vol. 122, 119-136, 2012.
doi:10.2528/PIER11092008

56. Zavargo-Peche, L., A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, "Fourier based combined techniques to design novel sub-wavelength optical integrated devices," Progress In Electromagnetics Research, Vol. 123, 447-465, 2012.
doi:10.2528/PIER11072907

57. Lee, J.-H., S.-W. Cho, S.-H. Park, and K.-T. Kim, "Performance analysis of radar target recognition using natural frequency: Frequency domain approach ," Progress In Electromagnetics Research, Vol. 132, 315-345, 2012.

58. Ko, K. H., G. Jang, K. Park, and K. Kim, "GPR-based landmine detection and identification using multiple features," Int. J. Antennas Propag., Vol. 2012, 1-7, 2012.

59. Zhu, X., Z. Zhao, W. Yang, Y. Zhang, Z.-P. Nie, and Q. H. Liu, "Iterative time-reversal mirror method for imaging the buried object beneath rough ground surface," Progress In Electromagnetics Research, Vol. 117, 19-33, 2011.

60. Li, J., B. Wei, Q. He, L.-X. Guo, and D.-B. Ge, "Time-domain iterative physical optics method for analysis of EM scattering from the target half buried in rough surface: PEC case," Progress In Electromagnetics Research, Vol. 121, 391-408, 2011.
doi:10.2528/PIER11082906


© Copyright 2014 EMW Publishing. All Rights Reserved