Vol. 134

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-11-24

Scalar Potential Depolarizing Dyad Artifact for a Uniaxial Medium

By Michael John Havrilla
Progress In Electromagnetics Research, Vol. 134, 151-168, 2013
doi:10.2528/PIER12101214

Abstract

A scalar potential formulation for a uniaxial anisotropic medium is succinctly derived through the exclusive use of Helmholtz's theorem and subsequent identification of operator orthogonality. The resulting formulation is shown to be identical to prior published research, with the notable exception that certain scalar potential fields not considered in previous work are rigorously demonstrated to be unimportant in the field recovery process, thus ensuring uniqueness. In addition, it is revealed that both a physically expected and unexpected depolarizing dyad contribution appears in the development. Using a Green's function spectral domain analysis and subsequent careful application of Leibnitz's rule it is shown that, for an unbounded homogeneous uniaxial medium, the unexpected depolarizing dyad term is canceled, leading to a mathematically and physically consistent and correct theory.

Citation


Michael John Havrilla, "Scalar Potential Depolarizing Dyad Artifact for a Uniaxial Medium," Progress In Electromagnetics Research, Vol. 134, 151-168, 2013.
doi:10.2528/PIER12101214
http://www.jpier.org/PIER/pier.php?paper=12101214

References


    1. Stratton, J. A., Electromagnetic Theory, IEEE Press, 2007.

    2. Harrington, R. F., Time-harmonic Electromagnetic Fields, IEEE Press, 2001.
    doi:10.1109/9780470546710

    3. Collin, R. E., Field Theory of Guided Waves, 2nd Edition, IEEE Press, 2001.

    4. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.
    doi:10.1109/9780470547052

    5. Przezdziecki, S. and R. Hurd, "A note on scalar Hertz potentials for gyrotropic media," Applied Physics A: Materials Science & Processing, Vol. 20, 313-317, 1979.

    6. Weiglhofer, W., "Scalarisation of Maxwell's equations in general inhomogeneous bianisotropic media," IEE Proceedings H: Microwaves, Antennas and Propagation, Vol. 134, No. 4, 357-360, Aug. 1987.
    doi:10.1049/ip-h-2.1987.0070

    7. Weiglhofer, W. and I. Lindell, "Scalar potential formalism for uniaxial bianisotropic media," Digest of IEEE Antennas and Propagation Society International Symposium, Vol. 3, 1586-1589, Seattle, Washington, Jun. 1994.

    8. Weiglhofer, W. and I. Lindell, "Fields and potentials in general uniaxial bianisotropic media: I. Axial sources," International Journal of Applied Electromagnetics in Materials, Vol. 4, No. 3, 211-220, 1994.

    9. Weiglhofer, W., "Fields and potentials in general uniaxial bianisotropic media: II. General sources and inhomogeneities," International Journal of Applied Electromagnetics and Mechanics, Vol. 7, No. 1, 1-9, 1996.

    10. Weiglhofer, W. and S. Hansen, "Faraday chiral media revisited - I: Fields and sources," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, 807-814, May 1999.
    doi:10.1109/8.774134

    11. Weiglhofer, W., "Scalar Hertz potentials for nonhomogeneous uniaxial dielectric-magnetic mediums," International Journal of Applied Electromagnetics and Mechanics, Vol. 11, No. 3, 131-140, Jan. 2000.

    12. Weiglhofer, W., "Hertz potentials in complex medium electromagnetics," Proceedings of 8th International Conference on Electromagnetics of Complex Media, Bianisotropics, 107-110, Lisbon, Portugal, 2000.

    13. Weiglhofer, W. S., "Scalar Hertz potentials for linear bianisotropic mediums," Electromagnetic Fields in Unconventional Materials and Structures, 1-37, John Wiley, 2000.

    14. Lindell, I. V. and F. Olyslager, "Potentials in bi-anisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 3-18, 2001.
    doi:10.1163/156939301X00571

    15. Georgieva, N. and W. S. Weiglhofer, "Electromagnetic vector potentials and the scalarization of sources in a nonhomogeneous medium," Physical Review E, Vol. 66, No. 4, 046614, 2002.
    doi:10.1103/PhysRevE.66.046614

    16. De Visschere, P., "Electromagnetic source transformations and scalarization in stratified gyrotropic media," Progress In Electromagnetics Research B, Vol. 18, 165-183, 2009.
    doi:10.2528/PIERB09070904

    17. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, 1994.

    18. Serdyukov, A., I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, Gordon and Breach, 2001.

    19. Wieglhofer, W. S. and A. Lakhtakia, Introduction to Complex Mediums for Optics and Electromagnetics, SPIE Press, 2003.

    20. Mackay, T. G. and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide, World Scientific, 2010.

    21. Tretyakov, S. A. and A. A. Sochava, "Novel uniaxial bianisotropic materials: Reflection and transmission in planar structures," Progress In Electromagnetics Research, Vol. 9, 157-179, 1994.

    22. Chung, C. and K. Whites, "Effective constitutive parameters for an artificial uniaxial bianisotropic chiral medium," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 10, 1363-1388, 1996.
    doi:10.1163/156939396X00135

    23. Whites, K. and C. Chung, "Composite uniaxial bianisotropic chiral materials characterization: Comparison of predicted and measured scattering," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 3, 371-394, 1997.
    doi:10.1163/156939397X00288

    24. Collin, R., "A simple artificial anisotropic dielectric medium," IEEE Transactions on Microwave Theory and Techniques, Vol. 6, No. 2, 206-209, Apr. 1958.
    doi:10.1109/TMTT.1958.1124539

    25. Van Bladel, J., "Some remarks on Green's dyadic for infinite space," IEEE Transactions on Antennas and Propagation, Vol. 9, No. 6, 563-566, Nov. 1961.

    26. Fikioris, J. G., "Electromagnetic field inside a current-carrying region," Journal of Mathematical Physics, Vol. 6, No. 11, 1617-1620, 1965.
    doi:10.1063/1.1704702

    27. Chen, K.-M., "A simple physical picture of tensor Green's function in source region," Proceedings of the IEEE, Vol. 65, No. 8, 1202-1204, Aug. 1977.
    doi:10.1109/PROC.1977.10669

    28. Yaghjian, A., "Electric dyadic Green's functions in the source region," Proceedings of the IEEE, Vol. 68, No. 2, 248-263, Feb. 1980.
    doi:10.1109/PROC.1980.11620

    29. Ball, J. and P. Khan, "Source region electric field derivation by a dyadic Green's function approach," IEE Proceedings H: Microwaves, Optics and Antennas, Vol. 127, No. 5, 301-304, Oct. 1980.
    doi:10.1049/ip-h-1.1980.0063

    30. Bagby, J. and D. Nyquist, "Dyadic Green's functions for integrated electronic and optical circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 2, 207-210, Feb. 1987.
    doi:10.1109/TMTT.1987.1133625

    31. Viola, M. and D. Nyquist, "An observation on the Sommerfeld-integral representation of the electric dyadic Green's function for layered media," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 8, 1289-1292, Aug. 1988.
    doi:10.1109/22.3672

    32. Chew, W., "Some observations on the spatial and eigenfunction representations of dyadic Green's functions," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 10, 1322-1327, Oct. 1989.
    doi:10.1109/8.43544

    33. Ali, S. M., T. M. Habashy, and J. A. Kong, "Spectral-domain dyadic Green's function in layered chiral media," Journal of the Optical Society of America A, Vol. 9, No. 3, 413-423, Mar. 1992.
    doi:10.1364/JOSAA.9.000413

    34. Jakoby, B. and F. Olyslager, "Singularity in Green dyadics for uniaxial bianisotropic media," Electronics Letters, Vol. 31, No. 10, 779-781, May 1995.
    doi:10.1049/el:19950544

    35. Weiglhofer, W. S., "Electromagnetic field in the source region: A review," Electromagnetics, Vol. 19, No. 6, 563-577, 1999.
    doi:10.1080/02726349908908674

    36. Hildebrand, F. B., Advanced Calculus for Applications, 364-365, 2nd Edition, Prentice-Hall, 1976.

    37. Silberstein, M., "Application of a generalized Leibniz rule for calculating electromagnetic fields within continuous source regions," Radio Science, Vol. 26, No. 1, 183-190, 1991.
    doi:10.1029/89RS03057