PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 136 > pp. 43-59

RADIATION ANALYSIS OF LARGE ANTENNA ARRAY BY USING PERIODIC EQUIVALENCE PRINCIPLE ALGORITHM

By K. Zhang, J. Ou Yang, F. Yang, C. Wu, Y. Li, and J. Zhang

Full Article PDF (644 KB)

Abstract:
In this paper, an improved equivalence principle algorithm is proposed to solve the radiation problems of large antenna arrays with periodic structures. This method is a hybridization in which the typical scheme of periodic Green's function is combined with the original equivalence principle algorithm. The repeated elements are changed from the original antenna units into the surfaces enclosing the original ones. The proposed approach is compared with periodic method of moments which is based on the integral equation and the periodic Green's function. Numerical results validate the feasibility of the improved method.

Citation:
K. Zhang, J. Ou Yang, F. Yang, C. Wu, Y. Li, and J. Zhang, "Radiation Analysis of Large Antenna Array by Using Periodic Equivalence Principle Algorithm," Progress In Electromagnetics Research, Vol. 136, 43-59, 2013.
doi:10.2528/PIER12110507
http://www.jpier.org/PIER/pier.php?paper=12110507

References:
1. Su, J. X., X. W. Xu, M. He, and K. Zhang, "Integral-equation analysis of frequency selective surfaces using Ewald transformation and lattice symmetry," Progress In Electromagnetics Research, Vol. 121, 249-269, 2011.
doi:10.2528/PIER11081902

2. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
doi:10.2528/PIER09081702

3. Wan, J. X., J. Lei, and C. H. Liang, "An efficient analysis of large-scale periodic microstrip antenna arrays using characteristic basis funciton method," Progress In Electromagnetics Research, Vol. 50, 61-81, 2005.
doi:10.2528/PIER04050901

4. Peng, Z. and J.-F. Lee, "Non-conformal domain decomposition method with mixed true second order transmission condition for solving large finite antenna arrays," IEEE Trans. Antenn. Propaga., Vol. 59, No. 5, Aug. 2011.

5. Xia, L., C.-F.Wang, L.-W. Li, P.-S. Kooi, and M.-S. Leong, "Resonant behaviours of microstrip antenna in multilayered media: An efficient fullwave analysis," Progress In Electromagnetics Research, Vol. 31, 55-67, 2011.

6. La Cono, G., R. Gardelli, M. Albani, and A. Freni, An efficient full-wave-MOM for RLSA antennas, IEEE Antennas and Propagation Society International Symposium, Vol. 3A, 118-121, Jul. 2005.

7. Lim, C.-P., "Method of moments analysis of electrically large thin square and rectangular loop antennas: Near-and-far-zone field," Progress In Electromagnetics Research, Vol. 34, 117-141, 2001.
doi:10.2528/PIER01042402

8. Trujillo-Romero, C. J., L. Leija, and A. Vera, "FEM modeling for performance evaluation of an electromagnetic oncology deep hyperthermia applicator when using monopole inverted T, and plate antennas," Progress In Electromagnetics Research, Vol. 120, 99-125, 2011.

9. Lei, J.-Z., C.-H. Liang, W. Ding, and Y. Zhang, "EMC analysis of antennas mounted on electrically large platforms with parallel FDTD method," Progress In Electromagnetics Research, Vol. 84, 205-220, 2008.
doi:10.2528/PIER08071303

10. Yang, S. W., Y. K. Chen, and Z. P. Nie, "Simulation of time modulated linear antenna array using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
doi:10.2528/PIER09092507

11. McGrath, D. T. and V. P. Pyati, Periodic boundary conditions for finite element analysis of infinite phased array antennas, IEEE Antenna and Propagation Society International Symposium, Vol. 3, 1502-1505, 1994.

12. Mahachoklertwattana, P., P. H. Pathak, C.-F. Wang, and Y.-B. Gan, "A fast MOM solution for large finite planar periodic arrays with non-rectangular element truncation boundaries," IEEE APMC, 1-4, 2007.

13. Holter, H. and H. Steyskal, "Broadband FDTD analysis of infinite phased arrays using periodic boundary conditions," Electronics Letters, 758-759, 1999.
doi:10.1049/el:19990553

14. Barlevy, A. S. and Y. Rahmat-Samii, "Characteristics of electromagnetic band-gaps composed of multiple periodic tripods with interconnecting vias: Concept, analysis and design," IEEE Trans. Antenn. Propaga., Vol. 49, No. 3, Mar. 2001.

15. Su, J., J., X. Xu, and M. He, "Hybrid PMM-MOM method for analyzing the RCS of finite array," IEEE International Conference on Information Science and Technology, 532-535, 2011.

16. Guerin, N., C. Craeye, and X. Dardenne, "Accelerated computation of the free space Green's function gradient of infinite phased arrays of dipoles ," IEEE Trans. Antenn. Propaga., Vol. 57, No. 10, Oct. 2009.

17. Dardenne, X. and C. Craeye, "Method of moments simulation of infinitely periodic structures combining metal with connected dielectric objects," IEEE Trans. Antenn. Propaga., Vol. 56, No. 8, Aug. 2008.

18. Shubair, R. M. and Y. L. Chow, "Efficient computation of the periodic Green's function in layered dielectric media," IEEE Trans. Antenn. Propaga., Vol. 41, No. 3.

19. Miura, A. and Y. Rahmat-Samii, RF characteristics of spaceborne antenna mesh reflecting surfaces: Application of periodic method of moments , IEEE Antenna and Propagation Society International Symposium, Vol. 3A, 375-378, 2005.

20. Bahadori, H., H. Alaeian, and R. Faraji-Dana, "Computation of periodic Green's functions in layered media using complex images technique," Progress In Electromagnetics Research, Vol. 112, 225-240, 2011.

21. Stevanovic, I. and J. R. Mosig, "Green's functions for planar structures in periodic skewed 2-D lattices using Ewald transformation," IEEE EuCAP, 1-6, 2006.

22. Li, M.-K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antenn. Propaga., Vol. 55, No. 1, 130-138, Jan. 2007.
doi:10.1109/TAP.2006.888453

23. Sun, L.-E., M.-K. Li, and W. C. Chew, Applying the low frequency technique to the equivalence principle algorithm, Antenna and Propagation Society International Symposium, 1-4, 2009.

24. Li, M. K. and W. C. Chew, "A domain decomposition scheme based on equivalence theorem," Micro. Opt. Tech. Lett., Vol. 48, No. 9, 1853-1857, Sep. 2006.
doi:10.1002/mop.21777

25. Shao, H., J. Hu, Z. Nie, G. Han, and S. He, "Hybrid tangential equivalence principle algorithm with MLFMA for analysis of array structures ," Progress In Electromagnetics Research, Vol. 113, 127-141, 2011.

26. Yla-Oijala, P. and M. Taskinen, "Solving electromagnetic scattering by large and complex structures with surface equivalence principle algorithm," Waves in Random and Complex Media, Vol. 19, No. 1, Feb. 2009.
doi:10.1080/17455030802585365

27. Yla-Oijala, P. and M. Taskinen, "Solving electromagnetic scattering by multiple targets with surface equivalence principle algorithm," 3rd European Conference on Antenna and Propagation, 88-92, Mar. 2009.

28. Li, M.-K. and W. C. Chew, "Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme," IEEE Trans. Antenn. Propaga., Vol. 56, No. 8, 2389-2397, Aug. 2008.
doi:10.1109/TAP.2008.926785

29. Ouyang, J., F. Yang, S. W. Yang, and Z. P. Nie, "Exact simulation method VSIE+MLFMA for analysis radiation pattern of probe-feed conformal microstrip antenna and the application of synthesis radiation pattern of conformal array mounted on finite-length PEC circular cylinder with DES," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1995-2008, 2007.
doi:10.1163/156939307783152803

30. Luo, W., S. Yang, and Z. Nie, "A wideband and dual polarization base station antenna for IMT-advanced system," Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, Vol. 1, 483-486, 2011.
doi:10.1109/CSQRWC.2011.6036990


© Copyright 2014 EMW Publishing. All Rights Reserved