PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 136 > pp. 17-27

FINITE-BOUNDARY BOWTIE APERTURE ANTENNA FOR TRAPPING NANOPARTICLES

By H. Ye, H. Wang, S. P. Yeo, and C.-W. Qiu

Full Article PDF (405 KB)

Abstract:
We have found that a single finite-boundary bowtie aperture (FBBA) antenna with gap separation of 10 nm between its tips is capable of confining the electric field to a 18 nm X 18 nm region (╬╗/39.4) and enhancing its near-field intensity by 365-fold at 5 nm beneath the gold film enhancing its near-field intensity by 1, 800-fold inside the gap. The FBBA antenna is thus able to provide enhanced trapping potential by virtue of such extraordinarily high (but exponentially decaying) optical near-fields. We have been able to show that 12 nm gold nanoparticles can, in principle, be trapped by the FBBA antenna with 20 nm gap separation; stable trapping is assured where the trapping potential is found to be several times higher than Brownian-motion potential in water. In addition to trapping nanoparticles, this simple but efficient FBBA antenna may find ready application in near-field optical data storage.

Citation:
H. Ye, H. Wang, S. P. Yeo, and C.-W. Qiu, "Finite-Boundary Bowtie Aperture Antenna for Trapping Nanoparticles," Progress In Electromagnetics Research, Vol. 136, 17-27, 2013.
doi:10.2528/PIER12112601
http://www.jpier.org/PIER/pier.php?paper=12112601

References:
1. Novotny, L. and N. van Hulst, "Antennas for light," Nat. Photonics, Vol. 5, 83-90, 2011.
doi:10.1038/nphoton.2010.237

2. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937

3. Sun, S., Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, "Gradient-index meta-surface as a bridge linking propagating waves and surface waves," Nat. Materials, Vol. 11, 426-431, 2012.
doi:10.1038/nmat3292

4. Navarro-Cia, M. and S. A. Maier, "Broad-band near-infrared plasmonic nanoantennas for higher harmonic generation," ACS Nano, Vol. 6, 3537-3544, 2012.
doi:10.1021/nn300565x

5. Aouani, H., M. Navarro-Cia, M. Rahmani, T. Sidiropoulos, M. Hong, R. Oulton, and S. A. Maier, "Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light," Nano Lett., Vol. 12, 4997-5002, 2012.
doi:10.1021/nl302665m

6. Schuller, J. A., T. Taubner, and M. L. Brongersma, "Optical antenna thermal emitters," Nat. Photonics, Vol. 18, 658-661, 2009.
doi:10.1038/nphoton.2009.188

7. Yadipour, R., K. Abbasian, A. Rostami, and Z. D. Koozeh Kanani, "A novel proposal for ultra-high resolution and compact optical displacement sensor based on electromagnetically induced transparency in ring resonator," Progress In Electromagnetics Research, Vol. 77, 149-170, 2007.
doi:10.2528/PIER07081201

8. Mortazavi, D., A. Z. Kouzani, and K. C. Vernon, "A resonance tunable and durable LSPR nano-particle sensor: Al2O3 capped silver nano-disks," Progress In Electromagnetics Research, Vol. 130, 429-446, 2012.

9. Cao, L., J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, "Resonant germanium nanoantenna photodetectors," Nano Lett., Vol. 10, 1229-1233, 2010.
doi:10.1021/nl9037278

10. Gao, H., K. Li, F. Kong, H. Xie, and J. Zhao, "Optimizing nano-optical antenna for the enhancement of spontaneous emission," Progress In Electromagnetics Research, Vol. 104, 313-331, 2010.
doi:10.2528/PIER09111607

11. Roxworthy, B. J., K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, K. C. Toussaint, and Jr., "Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting ," Nano Lett., Vol. 12, 796-801, 2012.
doi:10.1021/nl203811q

12. Pan, L., Y. Park, E. Ulin-Avila, S. Xiong, D. B. Bogy, and X. Zhang, "Maskless plasmonic lithography at 22nm resolution," Scientific Reports, Vol. 1, Article No. 175, 2011, DOI: 10.1038/srep00175.

13. Wang, H., L. Shi, G. Yuan, X. S. Miao, W. Tan, and T. C. Chong, "Subwavelength and super-resolution nondiffraction beam," Appl. Phys. Lett., Vol. 89, 171102, 2006.
doi:10.1063/1.2364693

14. Ashkin, A., J. M. Dziedzic, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett., Vol. 11, 288, 1986.
doi:10.1364/OL.11.000288

15. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, Berlin Heidelberg, New York, 1988.

16. Wang, H., et al., "Fighting against diffraction: Apodization and near field diffraction structures," Laser Photonics Rev., 1-39, 2011.

17. Wang, H., C. T. Chong, and L. Shi, "Optical antennas and their potential applications to 10Terabit/in2 recording," IEEE: Optical Data Storage Meeting, 16-18, 2009.

18. Novotny, L. and B. Hecht, Principle of Nano-optics,, Cambridge University Press, 2006.

19. Chu, S., et al., "Cooling and trapping of neutral atoms," Phys. Rev. Lett., Vol. 57, 314, 1986.
doi:10.1103/PhysRevLett.57.314

20. Ashkin, A., J. M. Dziedzic, and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature, Vol. 330, 769, 1987.
doi:10.1038/330769a0

21. Ashkin, A. and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science, Vol. 235, 1517, 1987.
doi:10.1126/science.3547653

22. Yang, A. H. J., M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature, Vol. 457, 71, 2009.
doi:10.1038/nature07593

23. Lumerical Solutions, Inc., http://www.lumerical.com.

24., Lumerical Solutions, Inc., http://www.lumerical.com/solutions/in-novation/fdtd multicoe┬▒cient material modeling.html.

25. Terris, B. D., H. J. Mamin, and D. Rugar, "Nearfield optical data storage," Appl. Phys. Lett., Vol. 68, 141, 1996.
doi:10.1063/1.116127

26. Leen, J. B., P. Hansen, Y.-T. Cheng, A. Gibby, and L. Hesselink, "Near-field optical data storage using C-apertures," Appl. Phys. Lett., Vol. 97, 073111, 2010.
doi:10.1063/1.3474801

27. Da Costa, K. Q. and V. A. Dmitriev, "Bowtie nanoantennas with polynomial sides in the excitation and emission regimes," Progress In Electromagnetics Research B, Vol. 32, 57-73, 2011.
doi:10.2528/PIERB11032808

28. Kessentini, S. and D. Barchiesi, "Effect of gap shape on the spectral response and field enhancement of dimer-based biosensor," PIERS Proceedings, 24-28, Moscow, Russia, Aug. 19-23, 2012.

29. Yang, X., et al., "Optical force in hybrid plasmonic waveguides," Nano Lett., Vol. 11, 321-328, 2011.
doi:10.1021/nl103070n

30. Cao, T. and M. J. Cryan, "Modeling of optical trapping using double negative index fishnet metamaterials," Progress In Electromagnetics Research, Vol. 129, 33-49, 2012.

31. Ordal, M. A., et al., "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt., Vol. 22, 1099-1117, 1983.
doi:10.1364/AO.22.001099


© Copyright 2014 EMW Publishing. All Rights Reserved