PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 136 > pp. 327-367

DESIGN OPTIMIZATION AND ANALYSIS OF AFPM SYNCHRONOUS MACHINE INCORPORATING POWER DENSITY, THERMAL ANALYSIS, AND BACK-EMF THD

By S. Kahourzade, A. Mahmoudi, A. Gandomkar, N. A. Rahim, H. W. Ping, and M. N. Uddin

Full Article PDF (1,582 KB)

Abstract:
This paper presents the design and analysis of an inside-out axial-flux permanent-magnet (AFPM) synchronous machine optimized by genetic algorithm (GA) based sizing equation, finite element analysis (FEA) and finite volume analysis (FVA). The preliminary design is a 2-pole-pair slotted TORUS AFPM machine. The designed motor comprises sinusoidal back-EMF waveforms, maximum power density and the best heat removal. The GA is used to optimize the dimensions of the machine in order to achieve the highest power density. Electromagnetic field analysis of the candidate machines from GA with various dimensions is then put through FEA in order to obtain various motor characteristics. Based on the results from GA and FEA, new candidates are introduced and then put through FVA for thermal behavior evaluation of the designed motors. Techniques like modifying the winding configuration and skewing the permanent magnets are also investigated to attain the most sinusoidal back-EMF waveform and reduced cogging torque. The performance of the designed 1 kW, 3-phase, 50 Hz, 4-pole AFPM synchronous machine is tested in simulation using FEA software. It is found that the simulation results fully agree with the designed technical specifications. It is also found from FVA results that the motor temperature reaches at highest temperature to 90°C at the rated speed and full load under steady state condition.

Citation:
S. Kahourzade, A. Mahmoudi, A. Gandomkar, N. A. Rahim, H. W. Ping, and M. N. Uddin, "Design Optimization and Analysis of AFPM Synchronous Machine Incorporating Power Density, Thermal Analysis, and Back-EMF THD," Progress In Electromagnetics Research, Vol. 136, 327-367, 2013.
doi:10.2528/PIER12120204
http://www.jpier.org/PIER/pier.php?paper=12120204

References:
1. Matyas, A. R., K. A. Biro, and D. Fodorean, "Multi-phase synchronous motor solution for steering applications," Progress In Electromagnetics Research, Vol. 131, 63-80, 2012.

2. Zhao, W., M. Cheng, R. Cao, and J. Ji, "Experimental comparison of remedial single-channel operations for redundant flux-switching permanent-magnet motor drive," Progress In Electromagnetics Research, Vol. 123, 189-204, 2012.
doi:10.2528/PIER11110405

3. Nguyen, Q. D. and S. Ueno, "Analysis and control of nonsalient permanent magnet axial gap self-bearing motor," IEEE Tran. on Ind. Electron., Vol. 58, No. 7, 2644-2652, Jul. 201.
doi:10.1109/TIE.2010.2076309

4. Aydin, M., S. Huang, and T. A. Lipo, "Design, analysis, and control of a hybrid field-controlled axial-flux permanent-magnet motor," IEEE Trans. on Ind. Electron., Vol. 57, No. 1, 78-87.
doi:10.1109/TIE.2009.2028294

5. Kano, Y., T. Kosaka, and N. Matsui, "A simple nonlinear magnetic analysis for axial-flux permanent-magnet machines," IEEE Tran. on Ind. Electron., Vol. 57, No. 6, 2124-2133, Jun. 2010.
doi:10.1109/TIE.2009.2034685

6. Fei, W., P. C. K. Luk, and K. Jinupun, "Design and analysis of high-speed coreless axial flux permanent magnet generator with circular magnets and coils," IET Electr. Power Appl., Vol. 4, No. 9, 739-747, Nov. 2010.
doi:10.1049/iet-epa.2010.0081

7. De Donato, G., F. Giulii Capponi, A. Rivellini, and F. Caricchi, "Integral-slot versus fractional-slot concentrated-winding axial-°ux permanent-magnet machines: Comparative design, FEA, and experimental tests," IEEE Trans. on Ind. Appl., Vol. 48, No. 5, 1487-1495, Sep./Oct. 2012.
doi:10.1109/TIA.2012.2210011

8. Mahmoudi, A., N. A. Rahim, and W. P. Hew, "Axial-flux permanent-magnet motor design for electric vehicle direct drive using sizing equation and finite element analysis," Progress In Electromagnetics Research, Vol. 122, 467-496, 2012.
doi:10.2528/PIER11090402

9. Caricchi, F., F. Maradei, G. De Donato, and F. G. Capponi, "Axial-°ux permanent-magnet generator for induction heating Gensets," IEEE Trans. on Ind. Electron., Vol. 57, No. 1, 128-137, Jan. 2010.
doi:10.1109/TIE.2009.2028292

10. Gieras, J. F., et al., Axial Flux Permanent Magnet Brushless Machines, 2nd Ed., Springer-Verlag, New York, 2008.

11. Kurronen, P. and J. Pyrhonen, "Analytic calculation of axial-flux permanent-magnet motor torque," IET Electr. Power Appl., Vol. 1, No. 1, 59-63, Jan. 2007.
doi:10.1049/iet-epa:20060093

12. Di Stefano, R. and F. Marignetti, "Electromagnetic analysis of axial-flux permanent magnet synchronous machines with fractional windings with experimental validation," IEEE Tran. on Ind. Electron., Vol. 59, No. 6, 2573-2582, Jun. 2012.
doi:10.1109/TIE.2011.2165458

13. Nguyen, T. D., K. J. Tseng, S. Zhang, and H. T. Nguyen, "A novel axial flux permanent-magnet machine for flywheel energy storage system: Design and analysis," IEEE Tran. on Ind. Electron., Vol. 58, No. 9, 3784-3794, Sep. 2011.
doi:10.1109/TIE.2010.2089939

14. Mahmoudi, A., S. Kahourzade, N. A. Rahim, and W. P. Ping, "Improvement to performance of solid-rotor-ringed line-start axial-flux permanent-magnet motor," Progress In Electromagnetics Research, Vol. 124, 383-404, 2012.
doi:10.2528/PIER11122501

15. Di Gerlando, A., G. Foglia, and R. Perini, "Permanent magnet machines for modulated damping of seismic vibrations: Electrical and thermal modeling," IEEE Trans. on Ind. Electron., Vol. 55, No. 10, 3602-3610, Oct. 2008.
doi:10.1109/TIE.2008.928105

16. Mahmoudi, A., S. Kahourzade, N. A. Rahim, W. P. Hew, and N. F. Ershad, "Slot-less torus solid-rotor-ringed line-start axial-flux permanent-magnet motor ," Progress In Electromagnetics Research, Vol. 131, 331-355, 2012.

17. Huang, S., J. Luo, F. Leonardi, and T. A. Lipo, "A general approach to sizing and power density equations for comparison of electrical machines," IEEE Trans. on Ind. Appl., Vol. 34, No. 1, 92-97, Jan./Feb. 1998.
doi:10.1109/28.658727

18. Huang, S., J. Luo, F. Leonardi, and T. A. Lipo, "A comparison of power density for axial flux machines based on the general purpose sizing equation," IEEE Trans. on Energy Convers., Vol. 14, No. 2, 185-192, Jan. 1999.
doi:10.1109/60.766982

19. Aydin, M., S. Huang, and T. A. Lipo, "Design and 3D lectromagnetic field analysis of non-slotted and slotted TORUS type axial flux surface mounted permanent magnet disc machines ," IEEE International Electric Machines and Drives Conf., 645-651, Jan. 2001.

20. Aydin, M., S. Huang, and T. A. Lipo, Optimum design and 3D finite element analysis of non-slotted and slotted internal rotor type axial flux PM disc machines, IEEE Power Engineering Society Summer Meeting, 645-651, Jul. 2001.

21. Upadhyay, P. R. and K. R. Rajagopa, "FE analysis and computer-aided design of a Sandwiched axial-flux permanent magnet brushless DC motor," IEEE Trans. on Magn., Vol. 42, No. 10, Oct. 2006..

22. Chan, T. F. and L. L. Lai, "An axial-flux permanent-magnet synchronous generator for a direct-coupled wind-turbine system," IEEE Trans. on Energy Convers., Vol. 22, No. 1, Mar. 2007.

23. Di Gerlando, A., G. Foglia, M. F. Iacchetti, and R. Perini, "Axial flux PM machines with concentrated armature windings: Design analysis and test validation of wind energy generators," IEEE Tran. on Ind. Electron., Vol. 58, No. 9, Sep. 2011.

24. Rostami, N., M. Feyzi, J. Pyrhonen, A. Parviainen, and V. Behjat, "Genetic algorithm approach for improved design of a variable speed axial-flux permanent-magnet synchronous generator," IEEE Trans. Magn., 2012.

25. Chang, L., C. Liao, L.-L. Chen, W. Lin, X. Zheng, and Y.-L. Wu, "Design of an ultra-wideband power divider via the coarse-grained parallel micro-genetic algorithm," Progress In Electromagnetics Research, Vol. 124, 425-440, 2012.
doi:10.2528/PIER11120517

26. Gargama, H., S. K. Chaturvedi, and A. K. Thakur, "Design and optimization of multilayered electromagnetic shield using a real-coded genetic algorithm," Progress In Electromagnetics Research B, Vol. 39, 241-266, 2012.
doi:10.2528/PIERB12011902

27. Friedrich, G. and M. Kant, "Choice of drives for electric vehicles: A comparison between two permanent magnet AC machines," IEE Proceedings Electric Power Applications, Vol. 45, No. 3, 247-252, May 1998.

28. Jian, L., G. Xu, J. Song, H. Xue, D. Zhao, and J. Liang, "Optimum design for improving modulating-effect of coaxial magnetic gear using response surface methodology and genetic algorithm," Progress In Electromagnetics Research, Vol. 116, 297-312, 2011.

29. Zhu, X., W. Shao, J.-L. Li, and Y.-L. Dong, "Design and optimization of low RCS patch antennas based on a genetic algorithm," Progress In Electromagnetics Research, Vol. 122, 327-339, 2012.
doi:10.2528/PIER11100703

30. Hanselman, D. C., Brushless Permanent Magnet Motor Design, McGraw-Hill, New York, 1994.

31. Bianchi, N., Electrical Machine Analysis Using Finite Element, Taylor & Francis, CRC Press, Florida, 2005.

32. Touati, S., R. Ibtiouen, O. Touhami, and A. Djerdir, "Experimental investigation and optimization of permanent magnet motor based on coupling boundary element method with permeances network," Progress In Electromagnetics Research, Vol. 111, 71-90, 2011.
doi:10.2528/PIER10092303

33. Jian, L., G. Xu, Y. Gong, J. Song, J. Liang, and M. Chang, "Electromagnetic design and analysis of a novel magnetic-gear-integrated wind power generator using time-stepping finite element method," Progress In Electromagnetics Research, Vol. 113, 351-367, 2011.

34. Torkaman, H. and E. Afjei, "Comparison of three novel types of two-phase switched reluctance motors using finite element method," Progress In Electromagnetics Research, Vol. 125, 151-164, 2012.
doi:10.2528/PIER12010407

35. Musolino, A., R. Rizzo, and E. Tripodi, "Tubular linear induction machine as a fast actuator: Analysis and design criteria," Progress In Electromagnetics Research, Vol. 132, 603-619, 2012.

36. Opera Version 14.0 User Guide, Vector Fields, 2011, http://www.cobham.com.

37. Chung, T., Computational Fluid Dynamics, Cambridge University Press, 2010.

38. Giovani, A. Numerical investigation of air flow and heat transfer in axial flux permanent magnet machines, Ph.D. Thesis, School of Engineering and Computer Science, Durham University, UK, Mar. 2010.

39. Versteeg, H. K. and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Prentice Hall, Pearson, 2007.

40. ANSYS-FLUENT Finite Volume Simulation Software, ANSYS Inc, PA, Canonsburg, http://www.ansys.com.

41. Li, H., "Cooling of a permanent magnet electric motor with a centrifugal impeller," International Journal of Heat and Mass Transfer, Vol. 53, No. 4, 797-810, 2010.
doi:10.1016/j.ijheatmasstransfer.2009.09.022

42. Saari, J. Thermal analysis of high-speed induction machines, Ph.D. Thesis, Helsinki University Technology, Helsinki, Finland, Jan. 1998.

43. Wu, L. J., Z. Q. Zhu, D. A. Staton, M. Popescu, and D. Hawkins, "Comparison of analytical models of cogging torque in surface-mounted PM machines," IEEE Tran. on Ind. Electron., Vol. 59, No. 6, 2414-2425, Jun. 2012.
doi:10.1109/TIE.2011.2143379

44. Blazek, J., Computational Fluid Dynamics: Principles and Applications, Elsevier Science Ltd, 2005.

45. GAMBIT Software Tools Version 0.2010.09.01, available: http://www.gambit-project.org.

46. Marignetti, F., V. Delli Colli, and Y. Coia, "Design of axial flux PM synchronous machines through 3-D coupled electromagnetic thermal and fluid-dynamical finite-element analysis," IEEE Trans. on Ind. Electron., Vol. 55, No. 10, 3591-3601, Oct. 2008.
doi:10.1109/TIE.2008.2005017

47. Wang, R. J., M. J. Kamper, and K. V. D. Westhuizen, "Optimal design of a coreless stator axial flux permanent magnet generator," IEEE Trans. on Magn., Vol. 41, No. 1, 55-64, Jan. 2005.
doi:10.1109/TMAG.2004.840183


© Copyright 2014 EMW Publishing. All Rights Reserved