Vol. 136
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-19
Enhanced Nonlinearities in Double-Fishnet Negative-Index Photonic Metamaterials
By
Progress In Electromagnetics Research, Vol. 136, 269-282, 2013
Abstract
We numerically analyze the optical response and nonlinear susceptibilities of fishnet metamaterials with the holes infiltrated by a third-order nonlinear dielectric. Through full-wave simulations and by employing a nonlinear parameter retrieval method, we confirm and quantify the enhanced nonlinearities, showing bulk third-order nonlinear susceptibilities that are up to two orders of magnitude larger than the nonlinear dielectric. We also use the retrieved parameters to calculate the material figure of merits and the conversion efficiencies, showing material figure of merits up to two orders of magnitude larger and conversion efficiencies up to four orders of magnitude larger than the nonlinear dielectric alone. Though these results are calculated using one-unit-cell thick structures, the large magnitude of the enhancement still makes these structures attractive, allowing reasonable conversion efficiencies supported by even subwavelength slabs.
Citation
Jun Guo, Yuanjiang Xiang, Xiaoyu Dai, and Shuangchun Wen, "Enhanced Nonlinearities in Double-Fishnet Negative-Index Photonic Metamaterials," Progress In Electromagnetics Research, Vol. 136, 269-282, 2013.
doi:10.2528/PIER12120601
References

1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 1780, 1780-1782, 2006.
doi:10.1126/science.1125907

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity ," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847

4. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

5. Shao, J., H. Zhang, Y. Lin, and H. Xin, "Dual-frequency electromagnetic cloaks enabled by LC-based metamaterial circuits," Progress In Electromagnetics Research, Vol. 119, 225-237, 2011.
doi:10.2528/PIER11052507

6. Shalaev, V. M., "Optical negative-index metamaterials," Nature Photon., Vol. 1, 41-48, 2006.

7. Soukoulis, C. M., S. Linden, and M.Wegener, "Negative refractive index at optical wavelengths," Science, Vol. 315, 47-49, 2007.
doi:10.1126/science.1136481

8. Busch, K., G. von Freymann, S. Linden, S. Mingaleev, L. Tkeshelashvili, and M. Wegener, "Periodic nanostructures for photonics," Phys. Rep., Vol. 444, No. 3, 101-202, 2007.
doi:10.1016/j.physrep.2007.02.011

9. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section ," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603

10. Duan, Z., Y. Wang, X. Mao, W.-X. Wang, and M. Chen, "Experimental demonstration of double-negative metamaterials partially filled in a circular waveguide," Progress In Electromagnetics Research, Vol. 121, 215-224, 2011.
doi:10.2528/PIER11090502

11. Li, J., F.-Q. Yang, and J. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

12. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research, Vol. 116, 409-423, 2011.

13. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404, 2005.
doi:10.1103/PhysRevLett.95.137404

14. Dolling, G., C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Low-loss negative-index metamaterial at telecommunication wavelengths," Opt. Lett., Vol. 31, No. 12, 1800-1802, 2006.
doi:10.1364/OL.31.001800

15. Chettiar, U. K., A. V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, "Dual-band negative index metamaterial: Double negative at 813nm and single negative at 772 nm," Opt. Lett., Vol. 32, No. 12, 1671-1673, 2007.
doi:10.1364/OL.32.001671

16. Li, T., J.-Q. Li, F.-M. Wang, Q.-J. Wang, H. Liu, S.-N. Zhu, and Y.-Y. Zhu, "Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures," Appl. Phys. Lett., Vol. 90, No. 25, 251112, 2007.
doi:10.1063/1.2750394

17. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376-379, 2008.
doi:10.1038/nature07247

18. Minovich, A., D. N. Neshev, D. A. Powell, I. V. Shadrivov, M. Lapine, H. T. Hattori, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, "Tilted response of fishnet metamaterials at near-infrared optical wavelengths ," Phys. Rev. B,, Vol. 81, No. 11, 115109, 2010.
doi:10.1103/PhysRevB.81.115109

19. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Design-related losses of double-fishnet negative-index photonic metamaterials," Opt. Express, Vol. 15, No. 18, 11536-11538, 2007.
doi:10.1364/OE.15.011536

20. Ku, Z. and S. R. J. Brueck, "Comparison of negative refractive index materials with circular, elliptical and rectangular holes," Opt. Express, Vol. 15, No. 8, 4515-4522, 2007.
doi:10.1364/OE.15.004515

21. Zhang, S., W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express, Vol. 13, No. 12, 4922-4930, 2005.
doi:10.1364/OPEX.13.004922

22. Minovich, A., D. N. Neshev, D. A. Powell, and I. V. Shadrivov, "Tunable fishnet metamaterials infiltrated by liquid crystals," Appl. Phys. Lett., Vol. 96, No. 19, 193103, 2010.
doi:10.1063/1.3427429

23. Wang, X., D.-H. Kwon, D. H.Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, "Tunable optical negative-index metamaterials employing anisotropic liquid crystals," Appl. Phys. Lett., Vol. 91, No. 14, 143122, 2007.
doi:10.1063/1.2795345

24. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

25. Zharov, A. A., I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear properties of left-handed metamaterials," Phys. Rev. Lett., Vol. 91, No. 3, 037401, 2003.
doi:10.1103/PhysRevLett.91.037401

26. Klein, M. W., C. Enkrich, M. Wegener, and S. Linden, "Second-harmonic generation from magnetic metamaterials," Science, Vol. 313, No. 5786, 502-504, 2006.
doi:10.1126/science.1129198

27. Shadrivov, I. V., A. B. Kozyrev, D. W. van der Weide, and Y. S. Kivshar, "Tunable transmission and harmonic generation in nonlinear metamaterials," Appl. Phys. Lett., Vol. 93, No. 16, 161903, 2008.
doi:10.1063/1.2999634

28. Popov, A. and V. Shalaev, "Negative-index metamaterials: Second-harmonic generation, Manley-Rowe relations and parametric amplification," Appl. Phys. B, Vol. 84, No. 1, 131-137, 2006.
doi:10.1007/s00340-006-2167-4

29. Poutrina, E., S. Larouche, and D. R. Smith, "Parametric oscillator based on a single-layer resonant metamaterial," Opt. Commun., Vol. 283, No. 8, 1640-1646, 2010.
doi:10.1016/j.optcom.2009.11.037

30. Powell, D. A., I. V. Shadrivov, Y. S. Kivshar, and M. V. Gorkunov, "Self-tuning mechanisms of nonlinear split-ring resonators," Appl. Phys. Lett., Vol. 91, No. 14, 144107, 2007.
doi:10.1063/1.2794733

31. Shadrivov, I. V., A. B. Kozyrev, D. W. van der Weide, and Y. S. Kivshar, "Nonlinear magnetic metamaterials," Opt. Express, Vol. 16, No. 25, 20266-20271, 2008.
doi:10.1364/OE.16.020266

32. Rose, A., D. Huang, and D. R. Smith, "Controlling the second harmonic in a phase-matched negative-index metamaterial," Phys. Rev. Lett., Vol. 107, No. 6, 063902, 2011.
doi:10.1103/PhysRevLett.107.063902

33. Larouche, S. and D. R. Smith, "A retrieval method for nonlinear metamaterials," Opt. Commun., Vol. 283, No. 8, 1621-1627, 2010.
doi:10.1016/j.optcom.2009.10.107

34. Rose, A., S. Larouche, D. Huang, E. Poutrina, and D. R. Smith, "Nonlinear parameter retrieval from three-and four-wave mixing in metamaterials," Phys. Rev. E, Vol. 82, No. 3, 036608, 2010.
doi:10.1103/PhysRevE.82.036608

35. Rose, A., S. Larouche, and D. R. Smith, "Quantitative study of the enhancement of bulk nonlinearities in metamaterials," Phys. Rev. A, Vol. 84, No. 5, 053805, 2011.
doi:10.1103/PhysRevA.84.053805

36. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from re°ection and transmission coefficients," Phys. Rev. B, Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

37. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamate rials," Phys. Rev. E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617