PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 136 > pp. 225-238

COVERED IMAGE OF SUPERLENS

By Y. Zhang and M. A. Fiddy

Full Article PDF (386 KB)

Abstract:
In this paper, we examine the imaging ability of a planar superlens in both the transverse and vertical dimension. By studying the field patterns of the image from different objects (points and scattering surfaces with subwavelength details) in front of a planar superlens, we show the relation between the transverse and vertical resolutions. We mainly discuss why we cannot get high subwavelength resolution for three dimensions at the same time, and there is a trade-off between the transverse and vertical resolution capabilities which is fundamental in nature for a planar superlens.

Citation:
Y. Zhang and M. A. Fiddy, "Covered Image of Superlens," Progress In Electromagnetics Research, Vol. 136, 225-238, 2013.
doi:10.2528/PIER12121206
http://www.jpier.org/PIER/pier.php?paper=12121206

References:
1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

4. Zhang, Y., T. M. Grzegorczyk, and J. A. Kong, "Propagation of electromagnetic waves in a slab with negative permittivity and negative permeability," Progress In Electromagnetics Research, Vol. 35, 271-286, 2002.
doi:10.2528/PIER01081901

5. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

6. Kuester, E. F., N. Memic, S. Shen, A. D. Scher, S. Kim, K. Kumley, and H. Loui, "A negative refractive index metamaterial based on a cubic array of layered nonmagnetic spherical particles," Progress In Electromagnetics Research B, Vol. 33, 175-202, 2011.
doi:10.2528/PIERB11042206

7. Garcia, C. R., J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, and V. Gonzalez, "3D printing of anisotropic metamaterials," Progress In Electromagnetics Research Letters, Vol. 34, 75-82, 2012.

8. Shalaev, V. M., "Optical negative-index metamaterials," Nature Photonics, Vol. 1, 41-48, 2007.
doi:10.1038/nphoton.2006.49

9. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

10. Pendry, J. B. and S. A. Ramakrishna, "Refining the perfect lens," Physica B: Condensed Matter, Vol. 338, 329-332, 2003.
doi:10.1016/j.physb.2003.08.014

11. Ramakrishna, S. A., J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, "Imaging the near field," J. Mod. Optics, Vol. 50, 1419-1430, 2003.

12. Belov, P. A., Y. Hao, and S. Sudhakaran, "Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime," Phys. Rev. B, Vol. 73, 113110, 2006.
doi:10.1103/PhysRevB.73.113110

13. Wood, B., J. B. Pendry, and D. P. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Phys. Rev. B, Vol. 74, 115116, Sep. 2006.
doi:10.1103/PhysRevB.74.115116

14. Webb, K. J. and M. Yang, "Subwavelength imaging with a multilayer silver film structure," Opt. Lett., Vol. 31, 2130-2132, 2006.
doi:10.1364/OL.31.002130

15. Feng, S. M. and J. M. Elson, "Diffraction-suppressed high-resolution imaging through metallodielectric nanofilms," Opt. Express, Vol. 14, 216-221, 2006.
doi:10.1364/OPEX.14.000216

16. Shin, H. C. and S. H. Fan, "All-angle negative refraction and evanescent wave amplification using one-dimensional metallodi-electric photonic crystals," Appl. Phys. Lett., Vol. 89, 151102, 2006.
doi:10.1063/1.2360187

17. Shi, L. H. and L. Gao, "Subwavelength imaging from a multilayered structure containing interleaved nonspherical metal-dielectric composites," Phys. Rev. B, Vol. 77, 195121, 2008.
doi:10.1103/PhysRevB.77.195121

18. Moore, C. P., M. D. Arnold, P. J. Bones, and R. J. Blaikie, "Image fidelity for single-layer and multi-layer silver superlenses," J. Opt. Soc. Am. A, Vol. 25, 911-918, 2008.
doi:10.1364/JOSAA.25.000911

19. Cao, P., X. Zhang, L. Cheng, and Q. Meng, "Far field imaging research based on multilayer positive- and negative-refractive-index media under off-axis illumination," Progress In Electromagnetics Research, Vol. 98, 283-298, 2009.
doi:10.2528/PIER09092801

20. Kotyńki, R. and T. Stefaniuk, "Multiscale analysis of subwave-length imaging with metal-dielectric multilayers," Opt. Lett., Vol. 35, 1133-1135, 2010.
doi:10.1364/OL.35.001133

21. Jin, Y., "Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves ," Progress In Electromagnetics Research, Vol. 105, 347-364, 2010.
doi:10.2528/PIER10051309

22. Yan, C., D. Zhang, Y. Zhang, D. Li, and M. A. Fiddy, "Metal-dielectric composites for beam splitting and far-field deep sub-wavelength resolution for visible wavelengths," Opt. Express, Vol. 18, 14794-14801, 2010.
doi:10.1364/OE.18.014794

23. Cao, P., X. Zhang, W.-J. Kong, L. Cheng, and H. Zhang, "Superresolution enhancement for the superlens with anti-re°ection and phase control coatings via surface plasmons modes of asymmetric structure," Progress In Electromagnetics Research, Vol. 119, 191-206, 2011.
doi:10.2528/PIER11053010

24. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534-537, 2005.
doi:10.1126/science.1108759

25. Korobkin, D., Y. Urzhumov, and G. Shvets, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B, Vol. 23, 468-478, 2005.
doi:10.1364/JOSAB.23.000468

26. Taubner, T., D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science, Vol. 313, 1595, 2006.
doi:10.1126/science.1131025

27. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368

28. Zhang, X. and Z. Liu, "Superlenses to overcome the diffraction limit," Nature Materials, Vol. 7, 435, 2008.
doi:10.1038/nmat2141

29. Chaturvedi, P., W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, "A smooth optical superlens," Appl. Phys. Lett., Vol. 96, 043102, 2010.
doi:10.1063/1.3293448

30. Xie, Y., J. Jiang, and S. He, "Proposal of cylindrical rolled-up metamaterial lenses for magnetic resonance imaging application and preliminary experimental demonstration," Progress In Electromagnetics Research, Vol. 124, 151-162, 2012.
doi:10.2528/PIER11121402

31. Smith, D. R., D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett., Vol. 82, 1506, 2003.
doi:10.1063/1.1554779

32. Stockman, M. I., "Criterion for negative refraction with low optical losses from a fundamental principle of causality," Phys. Rev. Lett., Vol. 98, 177404, 2007.
doi:10.1103/PhysRevLett.98.177404

33. Mesa, F., M. J. Freire, R. Marqués, and J. D. Baena, "Three-dimensional superresolution in metamaterial slab lenses: Experiment and theory," Phys. Rev. B, Vol. 72, 235117, 2005.
doi:10.1103/PhysRevB.72.235117


© Copyright 2014 EMW Publishing. All Rights Reserved