PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 136 > pp. 579-594

A FAMILY OF ULTRA-THIN, POLARIZATION-INSENSITIVE, MULTI-BAND, HIGHLY ABSORBING METAMATERIAL STRUCTURES

By T. M. Kollatou, A. I. Dimitriadis, S. Assimonis, N. V. Kantartzis, and C. S. Antonopoulos

Full Article PDF (616 KB)

Abstract:
The systematic design of size-confined, polarization-independent metamaterial absorbers that operate in the microwave regime is presented in this paper. The novel unit cell is additionally implemented to create efficient multi-band and broadband structures by exploiting the scalability property of metamaterials. Numerical simulations along with experimental results from fabricated prototypes verify the highly absorptive performance of the devices, so developed. Moreover, a detailed qualitative and quantitative analysis is provided in order to attain a more intuitive and sound physical interpretation of the underlying absorption mechanism. The assets of the proposed concept, applied to the design of different patterns, appear to be potentially instructive for various EMI/EMC configurations.

Citation:
T. M. Kollatou, A. I. Dimitriadis, S. Assimonis, N. V. Kantartzis, and C. S. Antonopoulos, "A Family of Ultra-Thin, Polarization-Insensitive, Multi-Band, Highly Absorbing Metamaterial Structures," Progress In Electromagnetics Research, Vol. 136, 579-594, 2013.
doi:10.2528/PIER12123106
http://www.jpier.org/PIER/pier.php?paper=12123106

References:
1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, New York, 2006.
doi:10.1002/0471754323

2. Marqués, R., F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications, John Wiley & Sons, New York, 2008.

3. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617-1-11, 2005.

4. Landy, N. Y., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402-1-4, 2008.
doi:10.1103/PhysRevLett.100.207402

5. Li, M.-H., H.-L. Yang, and X.-W. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

6. Bilotti, F., A. Toscano, K. B. Alici, E. Ozbay, and L. Vegni, "Design of miniaturized narrowband absorbers based on resonant-magnetic inclusions," IEEE Trans. Electomagn. Compat., Vol. 53, No. 63, 63-72, 2011.
doi:10.1109/TEMC.2010.2051229

7. Liu, H. X., B. F. Yao, L. Li, and X. W. Shi, "Analysis and design of thin planar absorbing structures using Jerusalem cross slot," Progress In Electromagnetic Research B, Vol. 31, 261-281, 2011.

8. Zhu, W., X. Zhao, B. Gong, L. Liu, and B. Su, "Optical metamaterial absorber based on leaf-shaped cells," Appl. Phys. A --- Mater., Vol. 102, No. 1, 147-151, 2011.
doi:10.1007/s00339-010-6057-6

9. Ye, D., Z. Wang, Z. Wang, K. Xu, B. Zhang, J. Huangfu, C. Li, and L. Ran, "Towards experimental perfectly-matched layers with ultra-thin metamaterial surfaces ," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 5164-5172, 2012.
doi:10.1109/TAP.2012.2207686

10. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

11. Lee, J. and S. Lim, "Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance," Electron. Lett., Vol. 47, 8-9, 2011.
doi:10.1049/el.2010.2770

12. He, X. J., Y. Wang, J. M. Wang, and T. L. Gui, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetic Research, Vol. 115, 381-397, 2011.

13. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," J. Appl. Phys., Vol. vvvvvvv1, 014909-1-8, 2011.

14. Zhao, Y., F. Chen, H. Chen, N. Li, Q. Shen, and L. Zhang, "The microstructure design optimization of negative index metamaterials using genetic algorithm," Progress In Electromagnetics Research Letters, Vol. 22, 95-108, 2011.

15. Shen, X., T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, "Polarization-independent wide-angle triple-band metamaterial absorber," Opt. Express, Vol. 19, 9401-9407, 2011.
doi:10.1364/OE.19.009401

16. Fallahzadeh, S., K. Forooraghi, and Z. Atlasbaf, "Design, simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber," Progress In Electromagnetic Research Letters, Vol. 35, 135-144, 2012.

17. Lu, L., S. Qu, H. Ma, F. Yu, S. Xia, Z. Xu, and P. Bai, "A polarization-independent wide-angle dual directional absorption metamaterial absorber," Progress In Electromagnetic Research M, Vol. 77, 191-201, 2012.

18. Ye, Q., Y. Liu, H. Lin, M. Li, and H. Yang, "Multi-band metamaterial absorber made of multi-gap SRRs structure," Appl. Phys. A --- Mater., Vol. 107, No. 1, 155-160, 2012.
doi:10.1007/s00339-012-6796-7

19. Lee, H.-M. and H.-S. Lee, "A metamaterial based microwave absorber composed of coplanar electric-field-coupled resonator and wire array," Progress In Electromagnetic Research C, Vol. 34, 111-121, 2013.

20. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section ," Progress In Electromagnetic Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603

21. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strkwerda, D. Shrekenhammer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Appl. Phys., Vol. 43, 22510-1-5, 2010.

22. Veysi, M., M. Kamyab, J. Moghaddasi, and A. Jafargholi, "Transmission phase characterizations of metamaterial covers for antenna application," Progress In Electromagnetics Research Letters, Vol. 21, 49-57, 2011.

23. Jiang, Z. H., S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, "Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating ," ACS Nano, Vol. 5, No. 6, 4641-4647, 2011.
doi:10.1021/nn2004603

24. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetic Research, Vol. 122, 93-103, 2012.
doi:10.2528/PIER11101401

25. Koledintseva, M. Y., J. Huang, J. L. Drewniak, R. E. DuBroff, and B. Archambeault, "Modeling of metasheets embedded in dielectric layers," Progress In Electromagnetics Research B, Vol. 44, 89-116, 2012.

26. Chen, H. T., J. F. O'Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, "Complementary planar terahertz metamaterials," Opt. Express, Vol. 15, 1084-1095, 2007.
doi:10.1364/OE.15.001084

27. Computer Simulation Technology, CST MWSTM: Computer Simulation Technology: Microwave Studio, 2010.

28. Gu, S., J. P. Barrett, T. H. Hand, B. I. Popa, and S. A. Cummer, "A broadband low-reflection metamaterial absorber," J. Appl. Phys., Vol. 108, 064913-1-6, 2010.
doi:10.1063/1.3485808

29. Sun, J., L. Liu, G. Dong, and J. Zhou, "An extremely broad band metamaterial absorber based on destructive interference," Opt. Express, Vol. 19, No. 22, 21155-21162, 2011.
doi:10.1364/OE.19.021155

30. Cheng, Y. Z., Y. Wang, Y. Nie, R. Z. Gong, X. Xiong, and X. Wang, "Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements," J. Appl. Phys., Vol. 111, 044902-1-4, 2012.


© Copyright 2014 EMW Publishing. All Rights Reserved