PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 139 > pp. 423-444

AN INVESTIGATION ON NUMERICAL CHARACTERIZATION OF SCATTERING FROM TARGET IN A DIELECTRIC ROUGH SOIL SURFACE

By Y. Liang, X.-H. Zeng, L.-X. Guo, and Z.-S. Wu

Full Article PDF (479 KB)

Abstract:
Based on the Propagation-Inside-Layer Expansion (PILE) and the Forward-Backward method (FBM), the composite scattering from the target below a dielectric rough soil surface using the extended PILE (EPILE) combined with the Forward-Backward method (FBM) is studied. The accuracy and efficiency of the EPILE+FBM for this specific type of composite scattering is researched by comparing with the method of moments (MOM), the influences of the target size, target depth, target horizontal distance, the rms height, the correlation length, the incident angle and the soil moisture content, etc, to the bistatic scattering coefficient (BSC) are also investigated.

Citation:
Y. Liang, X.-H. Zeng, L.-X. Guo, and Z.-S. Wu, "An Investigation on Numerical Characterization of Scattering from Target in a Dielectric Rough Soil Surface," Progress In Electromagnetics Research, Vol. 139, 423-444, 2013.
doi:10.2528/PIER13011601
http://www.jpier.org/PIER/pier.php?paper=13011601

References:
1. Rice, S. O., Reflection of Electromagnetic Waves from Slightly Rough Surfaces, in Theory of Electromagnetic Waves, M. Kline, Ed., 351-378, Wiley, New York, 1951.

2. Holliday, D., "Resolution of a controversy surrounding the Kirchhoff approach and the small perturbation method in rough surface scattering theory," IEEE Trans. on Antennas and Propag., Vol. 35, No. 1, 120-122, Jan. 1987.
doi:10.1109/TAP.1987.1143978

3. Wu, Z. S., J. P. Zhang, L. X. Guo, and P. Zhou, "An improved two-scale model with volume scattering for the dynamic ocean surface," Progress In Electromagnetics Research, Vol. 89, 39-56, 2009.
doi:10.2528/PIER08111803

4. Winebrenner, D. and A. Ishimaru, "Investigation of a surface field phase perturbation technique for scattering from rough surfaces," Radio Sci., Vol. 20, No. 2, 161-170, 1985.
doi:10.1029/RS020i002p00161

5. Luo, G. and M. Zhang, "Investigation on the scattering from one-dimensional nonlinear fractal sea surface by second-order small-slope approximation," Progress In Electromagnetics Research, Vol. 133, 425-441, 2013.

6. Lentz, R. R., "A numerical study of electromagnetic scattering from ocean-like surfaces," Radio Sci., Vol. 9, 1139-1146, 1974.
doi:10.1029/RS009i012p01139

7. Chan, C. H., S. H.Lou, L.Tsang, and J. A. Kong, "Electromag-netic scattering of waves by random rough surface: A finite-difference time-domain approach," Micro. Opt. Tech. Lett., Vol. 4, No. 9, 355-359, 1991.
doi:10.1002/mop.4650040907

8. Lou, S. H., L. Tsang, and C. H. Chan, "Application of finite element method to Monte Carlo simulations of scattering of waves by random rough surfaces: Penetrable case," Waves in Random Media, Vol. 1, No. 4, 287-307, 1991.
doi:10.1088/0959-7174/1/4/006

9. Tsang, L., C. H. Chang, H. Sangani, A. Ishimaru, and P. Phu, "A banded matrix iterative approach to monte carlo simulations of large scale random rough surface scattering: TE case," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 9, 1185-1200, 1993.
doi:10.1163/156939393X00200

10. Iodice, A., "Forward-backward method for scattering from dielectric rough surfaces," IEEE Trans. on Antennas and Propag., Vol. 50, No. 7, 901-911, 2002.
doi:10.1109/TAP.2002.800700

11. Jandhyala, V., E. Michielssen, S. Balasubramaniam, and W. C. Chew, "A combined steepest descent-fast multipole algorithm for the fast analysis of three-dimensional scattering by rough surfaces," IEEE Trans. on Geosci. Remote Sens., Vol. 36, No. 3, 738-748, 1998.
doi:10.1109/36.673667

12. Qi, C., Z. Zhao, W. Yang, Z. P. Nie, and G. Chen, "Electromagnetic scattering and doppler analysis of three-dimensional breaking wave crests at low-grazing angle," Progress In Electromagnetics Research, Vol. 119, 239-252, 2011.
doi:10.2528/PIER11062401

13. Dusseaux, R., E. Vannier, O. Taconet, and G. Granet, "Study of backscatter signature for seedbed surface evolution under rainfall-influence of radar precision," Progress In Electromagnetics Research, Vol. 125, 415-437, 2012.
doi:10.2528/PIER11102807

14. Wang, X., C. F. Wang, and Y. B. Gan, "Electromagnetic scattering from a circular target above or below rough surface," Progress In Electromagnetics Research, Vol. 40, 207-227, 2003.
doi:10.2528/PIER02111901

15. Wang, X. and L. -W. Li, "Numerical characterization of bistatic scattering from PEC cylinder partially embedded in a dielectric rough surface interface: Horizontal polarization," Progress In Electromagnetics Research, Vol. 91, 35-51, 2009.
doi:10.2528/PIER09013001

16. Guo, L. X., A. Q. Wang, and J. Ma, "Study on EM wave scattering from 2-D target above 1-D large scale rough surface with low grazing incidence by parallel MOM based on PC clusters," Progress In Electromagnetics Research, Vol. 89, 149-166, 2009.
doi:10.2528/PIER08121002

17. Jin, Y. Q. and G. Li, "Detection of a scatter target over a randomly rough surface by using the angular correlation function in a finite-element approach," Waves in Random Media, Vol. 10, No. 4, 273-280, 2000.

18. Chan, C. H., S. H. Lou, L. Tsang, and J. A. Kong, "Electromagnetic scattering of waves by random rough surface: A finite-difference time-domain approach," Micro. Opt. Tech. Lett., Vol. 4, No. 9, 355-359, 1991.
doi:10.1002/mop.4650040907

19. Zhang, Y., Y. E. Yang, H. Braunisch, and J. A. Kong, "Electromagnetic wave interaction of conducting object with rough surface by hybrid SPM/MOM technique," Progress In Electromagnetics Research, Vol. 22, 315-335, 1999.
doi:10.2528/PIER98112506

20. Ye, H. and Y. Q. Jin, "A hybrid KA-MoM algorithm for computation of scattering from a 3-D PEC target above a dielectric rough surface," Radio Sci., Vol. 43, No. 3, 56-70, 2008.
doi:10.1029/2007RS003702

21. He, S. Y. and G. Q. Zhu, "A hybrid MM-PO method combining UV technique for scattering from two-dimensional target above a rough surface," Micro. Opt. Tech. Lett., Vol. 49, No. 12, 2957-2960, 2007.
doi:10.1002/mop.22922

22. Chiu, T. and K. Sarabandi, "Electromagnetic scattering interaction between a dielectric cylinder and a slightly rough surface," IEEE Trans. on Antennas and Propag., Vol. 47, No. 10, 902-913, 1999.
doi:10.1109/8.774155

23. Pino, M. R., L. Landesa, J. L. Rodriguez, F. Obelleiro, and R. J. Burkholder, "The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces," IEEE Trans. on Antennas and Propag., Vol. 47, No. 6, 961-968, 1999.
doi:10.1109/8.777118

24. Liang, Y., L. X. Guo, and Z. S. Wu, "The EPILE combined with the generalized-FBM for analyzing the scattering from targets above and on a rough surface," IEEE Antennas Wireless Propag. Lett., Vol. 9, No. 6, 809-813, 2010.
doi:10.1109/LAWP.2010.2068270

25. Zhang, Y., J. Lu, J. Pacheco, Jr., C. D. Moss, C. O. Ao, T. M. Grzegorczyk, and J. A. Kong, "Mode-expansion method for calculating electromagnetic wave scattered by object on rough ocean surface," IEEE Trans. on Antennas and Propag., Vol. 53, No. 5, 1631-1639, 2005.
doi:10.1109/TAP.2005.846721

26. Ye, H. and Y. Q. Jin, "Fast iterative approach to difference scattering from the target above a rough surface," IEEE Trans. on Geosci. Remote Sens., Vol. 41, No. 1, 108-115, 2006.

27. Xu, F. and Y. Q. Jin, "Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface," IEEE Trans. on Antennas and Propag., Vol. 57, No. 5, 1495-1505, 2009.
doi:10.1109/TAP.2009.2016691

28. Dechamps, N., N. de Beaucoudrey, C. Bourlier, and S. Toutain, "Fast numerical method for electromagnetic scattering by rough layered interfaces: Propagation-inside-layer expansion method," J. Opt. Soc. Amer. A, Vol. 23, No. 2, 359-369, 2006.
doi:10.1364/JOSAA.23.000359

29. Kubicke, G., C. Bourlier, and J. Saillard, "Scattering by an object above a randomly rough surface from a fast numerical method: Extended PILE method combined with FB-SA," Waves in Random and Complex Media, Vol. 18, No. 3, 495-519, 2008.
doi:10.1080/17455030802087057

30. Wang, J. R. and T. J. Schmugge, "An empirical model for the complex dielectric permittivity of soils as a function of water content," IEEE Trans. on Geosci. Remote Sens., Vol. 18, No. 4, 288-295, 1980.
doi:10.1109/TGRS.1980.350304

31. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves-numerical Simulations, 114-176, Wiley, New York, 2000.

32. Thorsos, E. I., "The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acous. Soc. Am., Vol. 83, No. 1, 78-92, 1988.
doi:10.1121/1.396188

33. Hestenes, M. R. and E. Stiefel, "Method of conjugate gradients for solving linear systems," J. Res. Natl. Bur. Stand., Vol. 49, No. 2, 409-436, 1952.
doi:10.6028/jres.049.044

34. Liang, Y., L. X. Guo, and Z. S. Wu, "The fast EPILE combined with FBM for electromagnetic scattering from dielectric targets above and below the dielectric rough surface," IEEE Trans. on Geosci. Remote Sens., Vol. 49, No. 10, 3892-3905, 2011.
doi:10.1109/TGRS.2011.2139219

35. Zhu, X., Z. Zhao, W. Yang, Y. Zang, Z. Nie, and Q. H. Liu, "Iterative time-reversal mirror method for imaging the buried object beneath rough ground surface," Progress In Electromagnetics Research, Vol. 117, 19-33, 2011.

36. Xu, P., L. Tsang, and K. S. Chen, "Fourth stokes parameter in polarimetric passive remote sensing from two-layer rough surfaces," Progress In Electromagnetics Research, Vol. 129, 125-141, 2012.


© Copyright 2014 EMW Publishing. All Rights Reserved