PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 137 > pp. 439-452

USE OF ALIGNED CARBON NANOTUBES AS ELECTRIC FIELD SENSORS

By C.-L. Lu, H.-J. Tsai, B.-Y. Wei, and W.-K. Hsu

Full Article PDF (764 KB)

Abstract:
Application of electric field in normal to aligned carbon nanotubes creates Coulomb forces at intertube junctions and tubes become closely packed. Packed structure facilitates intertube transfer of carriers and reduced resistance is found to scale with field strength. Aggregated nanotubes are therefore used as field sensors and sensitivity is evident by drastic fluctuations of resistance. Sensing mechanism is discussed and verified.

Citation:
C.-L. Lu, H.-J. Tsai, B.-Y. Wei, and W.-K. Hsu, "Use of Aligned Carbon Nanotubes as Electric Field Sensors," Progress In Electromagnetics Research, Vol. 137, 439-452, 2013.
doi:10.2528/PIER13011707
http://www.jpier.org/PIER/pier.php?paper=13011707

References:
1. Dekkers, C., "Carbon nanotubes as molecular quantum wires," Physics Today, Vol. 52, 22-30, 1999.
doi:10.1063/1.882658

2. Ebbesen, T. W., H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, "Electrical conductivity of individual carbon nanotubes," Nature, Vol. 382, 54-56, 1996.
doi:10.1038/382054a0

3. Farajian, A. A., B. I. Yakobson, H. Mizuseki, and Y. Kawazoe, "Electronic transport through bent carbon nanotubes: Nanoelectromechanical sensors and switches," Phys. Rev. B, Vol. 67, 205423, 2003.
doi:10.1103/PhysRevB.67.205423

4. Appenzeller, J., J. Knoch, V. Derycke, R. Martel, S. Wind, and P. Avouris, "Field-modulated carrier transport in carbon nanotube transistors," Phys. Rev. Lett., Vol. 89, 126801, 2002.
doi:10.1103/PhysRevLett.89.126801

5. Li, H.-C., S.-Y. Lu, S.-H. Syue, W.-K. Hsu, and S.-C. Chang, "Conductivity enhancement of carbon nanotube composites by electrolyte addition," Appl. Phys. Lett., Vol. 93, 033104, 2008.
doi:10.1063/1.2963475

6. Baumgartner, G., M. Carrard, L. Zuppiroli, W. Bacsa, W. A. de Heer, and L. Forro, "Hall effect and magnetoresistance of carbon nanotube films," Phys. Rev. B, Vol. 55, 6704-6707, 1997.
doi:10.1103/PhysRevB.55.6704

7. Lin, Y.-H., Y.-C. Lai, C.-T. Hsu, C.-J. Hu, and W.-K. Hsu, "Why aggregated carbon nanotubes exhibit low quantum efficiency," Physical Chemistry Chemical Physics, Vol. 13, 7149-7153, 2011.
doi:10.1039/c0cp02691c

8. Lin, Y.-H., Y.-C. Lai, C.-L. Lu, and W.-K. Hsu, "Excellent cushioning by polymer-concreted arrays of aligned carbon nanotubes," J. Mater. Chem., Vol. 21, 12485, 2011.
doi:10.1039/c1jm12200b

9. Ding, J.-J., C.-L. Lu, and W.-K. Hsu, "Capacitive carbon nanotube networks in polymer composites," Appl. Phys. Lett., Vol. 99, 033111, 2011.
doi:10.1063/1.3615052

10. Tersoff, J. and R. S. Ruoff, "Structural properties of a carbon-nanotube crystal," Phys. Rev. Lett., Vol. 73, 676, 1994.
doi:10.1103/PhysRevLett.73.676

11. Syue, S.-H., C.-T. Hsu, U.-S. Chen, H.-J. Chen, W.-K. Hsu, and H.-C. Shih, "Increased strength of boron-doped carbon nanotube bundles produced by applying an electric field along their length," Carbon, Vol. 47, 1239, 2009.
doi:10.1016/j.carbon.2008.12.052

12. Monteverde, M. and M. Nunez-Regueiro, "Pressure control of conducting channels in single-wall carbon nanotube networks," Phys. Rev. Lett., Vol. 94, 235501, 2005.
doi:10.1103/PhysRevLett.94.235501

13. Fischer, J. E., H. Dai, A. Thess, R. Lee, N. M. Hanjani, D. L. Dehaas, and R. E. Smalley, "Metallic resistivity in crystalline ropes of single-wall carbon nanotubes," Phys. Rev. B, Vol. 55, 4921-4924, 1997.
doi:10.1103/PhysRevB.55.R4921

14. Chin, W., C.-L. Lu, and W.-K. Hsu, "A radiofrequency induced intra-band transition in carbon nanotubes," Carbon, Vol. 49, 2648-2652, 2011.
doi:10.1016/j.carbon.2011.02.050

15. Collins, P. G., K. Bradley, M. Ishigami, and A. Zettl, "Extreme oxygen sensitivity of electronic properties of carbon nanotubes," Science, Vol. 287, 1801-1805, 2000.
doi:10.1126/science.287.5459.1801

16. Ramanayaka, A. N. and R. G. Mani, "Microwave-induced electron heating in the regime of radiation-induced magnetoresistance oscillations," Phys. Rev. B, Vol. 83, 165303, 2011.
doi:10.1103/PhysRevB.83.165303

17. Li, Y.-F., C.-I. Hung, H.-F. Kuo, S.-H. Syu, W.-K. Hsu, S.-L. Kuo, and S.-C. Huang, "Electromagnetic modulation of carbon nanotube wetting," J. Mater. Chem., Vol. 19, 7694-7697, 2009.
doi:10.1039/b910793b

18. Girifalco, L. A., M. Hodak, and R. S. Lee, "Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential," Phys. Rev. B, Vol. 62, 13104-13110, 2000.
doi:10.1103/PhysRevB.62.13104

19. Syue, S.-H., S.-Y. Lu, W.-K. Hsu, and H.-C. Shih, "Internanotube friction," Appl. Phys. Lett., Vol. 89, 163115, 2006.
doi:10.1063/1.2369721

20. Cheng, T.-W. and W.-K. Hsu, "Winding of single-walled carbon nanotube ropes: An effective load transfer," Appl. Phys. Lett., Vol. 90, 123102, 2007.
doi:10.1063/1.2714282


© Copyright 2014 EMW Publishing. All Rights Reserved