PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 137 > pp. 599-619

BROADBAND MODIFIED RECTANGULAR MICROSTRIP PATCH ANTENNA USING STEPPED CUT AT FOUR CORNERS METHOD

By A. Moradikordalivand and T. A. Rahman

Full Article PDF (885 KB)

Abstract:
In this paper, a new method that called the ``Stepped Cut at Four Corners'' is introduced to design a multi-mode/broadband modified rectangular microstrip patch antennas (MRMPAs). In order to become acquainted with the new method, the design process of a monopole broadband MRMPA suitable for multifunctional wireless communication bands is explained. The methodology of the proposed broadband MRMPA design is presented in six stages. The first stage is designing a single-mode RMPA. Subsequently, by creating a step at the corners using the proposed method a dual-mode antenna is obtained at the second stage, while the triple-mode and multi-mode antennas are designed, at the third and fourth stages respectively. Two types of broadband antennas are obtained, the stepped line and straight line antennas. By increasing the number of steps, the antenna's operating bandwidth (BW), with return loss less than −10 dB, covers the frequency range from 900 MHz to 2.6 GHZ, which is suitable for GSM (900 MHz and 1.5 GHz), WiFi (2.4 GHz) and LTE (2.6 GHz) applications. In addition, the antenna prototype has been fabricated and measured in the all stages, in order to validate the simulation results, and there is a close agreement between the simulated and measured results.

Citation:
A. Moradikordalivand and T. A. Rahman, "Broadband modified rectangular microstrip patch antenna using stepped cut at four corners method," Progress In Electromagnetics Research, Vol. 137, 599-619, 2013.
doi:10.2528/PIER13011714
http://www.jpier.org/pier/pier.php?paper=13011714

References:
1. Milligan, T. A., Modern Antenna Design, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.
doi:10.1002/0471720615

2. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, Boston, 2003.
doi:10.1109/APS.1983.1149060

3. Islam, M. T., M. N. Shakib, and N. Misran, "Broadband E-H shaped microstrip patch antenna for wireless systems," Progress In Electromagnetics Research, Vol. 98, 163-173, 2009.
doi:10.2528/PIER09082302

4. Pouyanfar, N. and S. A. Rezaeieh, "Compact UWB antenna with inverted hat shaped resonator and shortening via pins for filtering properties," Progress In Electromagnetics Research Letters, Vol. 33, 187-196, 2012.

5. Abbaspour, M. and H. R. Hassani, "Wideband star-shaped microstrip patch antenna," Progress In Electromagnetics Research Letters, Vol. 1, 61-68, 2008.
doi:10.2528/PIERL07111505

6. Xu, H.-Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011.

7. Kim, D.-O., N.-I. Jo, H.-A. Jang, and C.-Y. Kim, "Design of the ultrawideband antenna with a quadruple-band rejection characteristics using a combination of the complementary split ring resonators," Progress In Electromagnetics Research, Vol. 112, 93-107, 2011.

8. Saleem, R. and A. K. Brown, "Empirical miniaturization analysis of inverse parabolic step sequence based UWB antennas," Progress In Electromagnetics Research, Vol. 114, 369-381, 2011.

9. Chen, Z., Y. L. Ban, J. H. Chen, J. L. W. Li, and Y. J. Wu, "Bandwidth enhancement of LTE/WWAN printed mobile phone antenna using slotted ground structure," Progress In Electromagnetics Research, Vol. 129, 469-483, 2012.

10. Lin, D. B., I. T. Tang, and M. Z. Hong, "A compact quad-band PIFA by tuning the defected ground structure for mobile phones," Progress In Electromagnetics Research B, Vol. 24, 173-189, 2010.
doi:10.2528/PIERB10070608

11. Li, C. M. and L. H. Ye, "Improved dual band-notched UWB slot antenna with controllable notched bandwidths," Progress In Electromagnetics Research, Vol. 115, 477-493, 2011.

12. Zhou, D., S.-C. S. Gao, F. Zhu, R. A. Abd-Alhameed, and J.-D. Xu, "A simple and compact planar ultra wideband antenna with single or dual band-notched characteristics," Progress In Electromagnetics Research, Vol. 123, 47-65, 2012.
doi:10.2528/PIER11101104

13. Liu, J., K. P. Esselle, S. G. Hay, and S.-S. Zhong, "Study of an extremely wideband monopole antenna with triple band-notched characteristics," Progress In Electromagnetics Research, Vol. 123, 143-158, 2012.
doi:10.2528/PIER11110401

14. Lamultree, S. and C. Phongcharoenpanich, "Bidirectional ultra-wideband antenna using rectangular ring fed by stepped monopole," Progress In Electromagnetics Research, Vol. 85, 227-242, 2008.
doi:10.2528/PIER08080103

15. Yu, A., F. Yang, and A. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
doi:10.2528/PIER07082902

16. Chen, Y., S. Yang, and Z.-P. Nie, "A novel wideband antenna array with tightly coupled octagonal ring elements," Progress In Electromagnetics Research, Vol. 124, 55-70, 2012.
doi:10.2528/PIER11121312

17. Pues, H. G. and A. R. Van De Capelle, "An impedance matching technique for increasing the bandwidth of microstrip antennas," IEEE Trans. Antennas and Propagation, Vol. 37, No. 11, 1345-1354, 1989.
doi:10.1109/8.43553

18. Wong, K. L. and T. W. Kang, "GSM850/900/1800/1900/UMTS printed monopole antenna for mobile phone application," Microwave Opt. Technol. Lett., Vol. 50, 3192-3198, 2008.
doi:10.1002/mop.23936

19. Ban, Y. L., J. H. Chen, L. J. Ying, J. L. W. Li, and Y. J. Wu, "Ultra wideband antenna for LTE/GSM/UMTS wireless USB dongle applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 403-406, 2012.

20. Islam, M. T., R. Azim, and A. T. Mobashsher, "Triple band-notched planar UWB antenna using parasitic strips," Progress In Electromagnetics Research, Vol. 129, 161-179, 2012.

21. Gujra, M., J. L.-W. Li, T. Yuan, and C.-W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807

22. Deng, J., L. Guo, T. Fan, Z. Wu, Y. Hu, and J. Yang, "Wideband circularly polarized suspended patch antenna with indented edge and gap-coupled feed," Progress In Electromagnetics Research, Vol. 135, 151-159, 2013.

23. Alvarez-Folgueiras, M., J. A. Rodriguez-Gonzalez, and F. Ares-Pena, "Experimental results on a planar array of parasitic dipoles fed by one active element," Progress In Electromagnetics Research, Vol. 113, 369-377, 2011.

24. Zhu, F., S.-C. S. Gao, A. T. S. Ho, C. H. See, R. A. Abd-Alhameed, J. Li, and J.-D. Xu, "Design and analysis of planar ultra-wideb and antenna with dual band-notched function," Progress In Electromagnetics Research, Vol. 127, 523-536, 2012.
doi:10.2528/PIER12033105

25. Chang, T. N. and J. H. Jiang, "Enhance gain and bandwidth of circularly polarized microstrip patch antenna using gap-coupled method," Progress In Electromagnetics Research, Vol. 96, 127-139, 2009.
doi:10.2528/PIER09081010

26. Elsheakh, D. N., H. A. Elsadek, and E. A. Abdallah, "Ultra-wide bandwidth microstrip monopole antenna by using electromagnetic band-gap structures," Progress In Electromagnetics Research Letters, Vol. 23, 109-118, 2011.

27. Zulkifli, F. Y., F. Narpati, and E. T. Rahardjo, "S-shaped patch antenna fed by dual offset electromagnetically coupled for 5-6 GHz high speed network," PIERS Online, Vol. 3, No. 2, 163-166, 2007.
doi:10.2529/PIERS060801042546

28. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

29. Zhao, F., K. Xiao, W. J. Feng, S. L. Chai, and J. J. Mao, "Design and manufacture of the wideband aperture-coupled stacked microstrip antenna," Progress In Electromagnetics Research C, Vol. 7, 37-50, 2009.
doi:10.2528/PIERC09021801

30. Lai, C. H., "Broadband aperture-coupled microstrip antennas with low cross polarization and back radiation," Progress In Electromagnetics Research Letters, Vol. 5, 187-197, 2008.
doi:10.2528/PIERL08111805

31. Lien, H. C., H. C. Tsai, Y. Lee, and W. F. Lee, "A circular polarization microstrip stacked structure broadband antenna," PIERS Online, Vol. 4, No. 2, 259-262, 2008.
doi:10.2529/PIERS070726103206

32. Ollikainen, J., M. Fischer, and P. Vainikainen, "Thin dual-resonant stacked shorted patch antenna for mobile communications," Electronics Letters, Vol. 35, 437-438, 1999.
doi:10.1049/el:19990324

33. Zaid, L., G. Kossiavas, J. Y. Dauvignac, J. Cazajous, and A. Papiernik, "Dual-frequency and broad-band antennas with stacked quarter wavelength elements," IEEE Trans. Antennas and Propagation, Vol. 47, No. 4, 654-660, 1999.
doi:10.1109/8.768804

34. Chen, Y., S. Yang, and Z. Nie, "Bandwidth enhancement method for low profile E-shaped microstrip patch antennas," IEEE Trans. Antennas and Propagation, Vol. 58, No. 7, 2442-2447, 2010.
doi:10.1109/TAP.2010.2048850

35. Bahal, I. J. and P. Bhartia, Microstrip Antenna, Artech House, Massachusetts, 1980.

36. Pozar, D. M. and D. H. Schaubert, Microstrip Antennas, the Analysis and Design of Microstrip Antennas and Arrays, IEEE Press, New York, 1995.

37. Chen, Y. and C. F. Wang, "Characteristic-mode-based improve-ment of circularly polarized U-slot and E-shaped patch antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1474-1477, 2012.
doi:10.1109/LAWP.2012.2231046

38. Wu, W. and Y. P. Zhang, "Analysis of ultra-wideband printed planar quasi-monopole antennas using the theory of characteristic modes," IEEE Antennas Propag. Mag., Vol. 52, No. 6, 67-77, 2010.
doi:10.1109/MAP.2010.5723225


© Copyright 2014 EMW Publishing. All Rights Reserved