PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 137 > pp. 513-526

SUPER/ZERO SCATTERING CHARACTERISTICS OF CIRCULAR SRR ARRAYS

By Y. Zhang, E. Forsberg, and S. He

Full Article PDF (646 KB)

Abstract:
The ability to control the scattering property of an object is important in many applications. In this paper, we propose and study the scattering characteristics of a circular array of split-ring resonators (SRRs). By calculating the scattered energy spectrum, we show that the proposed structure has a localized surface plasmon resonance like behavior, which makes it useful as a super scatterer. Furthermore, in a special case, the proposed structure exhibits transparency to the illuminated waves, i.e. it does not scatter any energy at all and thus acts as a zero electromagnetic scattering object.

Citation:
Y. Zhang, E. Forsberg, and S. He, "Super/Zero Scattering Characteristics of Circular SRR Arrays," Progress In Electromagnetics Research, Vol. 137, 513-526, 2013.
doi:10.2528/PIER13020602
http://www.jpier.org/PIER/pier.php?paper=13020602

References:
1. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

3. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

4. Iwanaga, M., "First-principle analysis for electromagnetic eigen modes in an optical metamaterial slab," Progress In Electromagnetics Research, Vol. 132, 129-148, 2012.

5. Garcia, C. R., J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, and V. Gonzalez, "3D printing of anisotropic metamaterials," Progress In Electromagnetics Research Letters, Vol. 34, 75-82, 2012.

6. Shalaev, V. M., "Optical negative-index metamaterials," Nature Photonics, Vol. 1, 41-48, 2007.
doi:10.1038/nphoton.2006.49

7. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

8. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28

9. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E,, Vol. 74, 036621, 2006.
doi:10.1103/PhysRevE.74.036621

10. Danaeifar, M., M. Kamyab, A. Jafargholi, and M. Veysi, "Bandwidth enhancement of a class of cloaks incorporating metamaterials," Progress In Electromagnetics Research Letters, Vol. 28, 37-44, 2012.
doi:10.2528/PIERL11093005

11. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

12. Zhang, Y., Y. Chuang, J. O. Schenk, and M. A. Fiddy, "Study of scattering patterns and subwavelength scale imaging based on finite-sized metamaterials," Applied Physics A, Vol. 107, 61-69, 2012.
doi:10.1007/s00339-011-6738-9

13. Xie, Y., J. Jiang, and S. He, "Proposal of cylindrical rolled-up metamaterial lenses for magnetic resonance imaging application and preliminary experimental demonstration," Progress In Electromagnetics Research, Vol. 124, 151-162, 2012.
doi:10.2528/PIER11121402

14. Hwang, R.-B., H.-W. Liu, and C.-Y. Chin, "A metamaterial-based E-plane horn antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
doi:10.2528/PIER09050606

15. Ma, Y. G., C. K. Ong, T. Tyc, and U. Leonhardt, "An omnidirectional retroreflector based on the transmutation of dielectric singularities," Nature Materials, Vol. 8, 639-642, 2009.
doi:10.1038/nmat2489

16. Ma, H. F. and T. J. Cui, "Three-dimensional broadband and broad-angle transformation-optics lens," Nature Communications, Vol. 1, 124, 2010.
doi:10.1038/ncomms1126

17. Talley, C. E., J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, "Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates," Nano Letters, Vol. 5, 1569-1574, 2005.
doi:10.1021/nl050928v

18. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937

19. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, New York, 2007.

20. Zhang, Y., X. Zhang, T. Mei, and M. Fiddy, "Negative index modes in surface plasmon waveguides: A study of the relations between lossless and lossy cases," Optics Express, Vol. 18, 12213-12225, 2010.
doi:10.1364/OE.18.012213

21. Li, J., Y. Zhang, T. Mei, and M. Fiddy, "Surface plasmon laser based on metal cavity array with two different modes," Optics Express, Vol. 18, 23626-23632, 2010.
doi:10.1364/OE.18.023626

22. Tribelsky, M. I. and B. S. Luk'yanchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett., Vol. 97, 263902, 2006.
doi:10.1103/PhysRevLett.97.263902

23. Pendry, J. B., L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, No. 5685, 847-848, 2004.
doi:10.1126/science.1098999

24. Ma, Y. G., L. Lan, S. M. Zhong, and C. K. Ong, "Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit," Optics Express, Vol. 19, 21189-21198, 2011.
doi:10.1364/OE.19.021189

25. Ma, Y. G. and C. K. Ong, "Generation of surface-plasmon-polariton like resonance mode in microwave metallic gratings," New Journal of Physics, Vol. 10, 063017, 2008.
doi:10.1088/1367-2630/10/6/063017

26. Pors, A., E. Moreno, L. Martin-Moreno, J. B. Pendry, and F. J. Garcia-Vidal, "Localized spoof plasmons arise while texturing closed surfaces," Phys. Rev. Lett., Vol. 108, 223905, 2012.
doi:10.1103/PhysRevLett.108.223905

27. Hao, F., T. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, "Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance," Nano Letters, Vol. 8, 3983-3988, 2008.
doi:10.1021/nl802509r


© Copyright 2014 EMW Publishing. All Rights Reserved