Vol. 139
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-05-08
Elimination of Cruptolestes Ferrungineus S. in Wheat by Radio Frequency Dielectric Heating at Different Moisture Contents
By
Progress In Electromagnetics Research, Vol. 139, 517-538, 2013
Abstract
Radio frequency (RF) dielectric heating was tested to control Cryptolestes ferrungineus S. in the bulk wheat samples (ca.152 g, dia. = 50 mm, ht.= 100 mm) at the MCs (%, w. b.) of 12, 15, and 18 using a pilotscale RF heater (1.5 kW, 27.12MHz) in the batch mode. When the temperature of the hottest spot (geometric center) of the sample, TH was at 80°C, all the adult insects were found dead at the cold spots, near bottom-wall, at 50.7°C to 56.0°C depending up on the wheat MCs. The temperatures of the insect-slurries higher than that of the bulk wheat by 0.8°C to 15.1°C indicated the selective heating of the insects. The mortalities of adult insects were almost constant within the quarantine period, QP1 (5 wk). The elapsed time during QP1 had a significant effect only on the insects' mortalities with the wheat at 12% MC. The wheat MC had only marginal significance on the absolute mortalities of insects. The larvae were completely destroyed at temperatures between 55°C and 60°C. The complete mortality of all life stages (eggs, larvae, pupae, and adults) of the insect was achieved at TH = 80°C without any emergence of the insects during QP2 (8 wk). The RF treatment enhanced the germination of the wheat kernels at 12% MC while it was decreased by 2% to 33% depending up on the wheat MC, and the treatment temperature. Temperature had no significant effect on the falling numbers, and the yields of flour, bran, and shorts, and the peak-bandwidth and the MC of the wheat, and the flour protein values. The means of the mixing-development-time deferred from the controls mostly for the wheat at 15% MC and TH = 70°C, and 18% MC and TH = 70°C and 80°C. The mean-peak-height and the color values varied between 4% and 16%, and 3% and 6% off the controls depending up on the temperatures. The uniform temperature of 60°C should be enough to control all life stages of the insect completely with a little or no changes in the important product quaities and germination of the wheat at MCs safe for the storage. Future research mainly focused on better estimation of the insect-to-grain electric field intensities is essential.
Citation
Bijay  Shrestha, Daeung Yu, and Oon-Doo Baik, "Elimination of Cruptolestes Ferrungineus S. in Wheat by Radio Frequency Dielectric Heating at Different Moisture Contents," Progress In Electromagnetics Research, Vol. 139, 517-538, 2013.
doi:10.2528/PIER13021406
References

1. Wang, S., G. Tiwari, S. Jiao, J. A. Johnson, and J. Tang, "Developing postharvest disinfestation treatments for legumes using radio frequency energy," Biosyst. Eng., Vol. 105, 342-349, 2010.

2. Ponomaryova, I., A. Torrecillas, N. Herrera, A. Velazquez, et al. "Insect control by radio-frequency high-strength electric fields," 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2009, 1-5, Toluca, Nov. 10-13, 2009.

3. Vadivambal, R., D. S. Jayas, and N. D. G. White, "Determination of mortality of di®erent life stages of Tribolium castaneum (Coleoptera: Tenebrionidae) in stored barley using microwaves," Journal of Economic Entomology, Vol. 101, No. 3, 1011-1021, 2008.

4. Vadivambal, R., D. S. Jayas, and N. D. G. White, "Wheat disinfestation using microwave energy," Journal of Stored Products Research, Vol. 43, 518-514, 2007.

5. Wang, S., J. Tang, T. Sun, E. J. Mitcham, T. Koral, and S. L. Birla, "Considerations in design of commercial radio frequency treatments for postharvest pest control in in-shell walnuts," Journal of Food Engineering, Vol. 77, 304-312, 2006.

6. Soproni, V. D., F. I. Hathazi, M. N. Arion, C. O. Molnar, and L. Bandici, "Aspects regarding the adapting and optimization of mixed drying systems microwave-hot air for the processing of agricultural seeds," PIERS Proceedings, 210-213, Beijing, China, Mar. 23-27, 2009.

7. Shrestha, B. and O. D. Baik, "Radio frequency (RF) selective heating of stored-grain insects at 27.12MHz - A feasibility study," Biosyst. Eng., Vol. 114, 195-204, 2013.

8. Cofie-Agbior, R., R. Muir, N. Sinha, and P. G. Fields, "Heat production by adult Cryptolestes ferrugineus (Stephens) of different ages and densities," Postbarvest Biol. Technol., Vol. 7, 371-380, 1996.

9. Nelson, S. O., "Dielectric spectroscopy in agriculture," J. Non-Cryst. Solids, Vol. 351, 2940-2944, 2005.

10. Guo, W., X. Wu, X. Zhu, and S. Wang, "Temperature-dependent dielectric properties of chestnut and chestnut weevil from 10 to 4500 MHz," Biosyst. Eng., Vol. 110, 340-347, 2011.

11. Ikediala, J. N., J. Tang, S. R. Drakeand, and L. G. Neven, "Dielectric properties of apple cultivars and codling moth larvae," Transactions of the American Society of Agricultural Engineers , Vol. 43, No. 5, 1175-1184, 2000.

12. Rashkovan, V. M., N. A. Khizhnyak, A. V. Basteev, L. A. Bazyma, L. N. de Rivera, and I. A. Ponomaryova, "Interaction of electromagnetic waves with granular product and insects," J. Microw. Power Electromagn. Energy, Vol. 36, No. 4, 225-235, 2003.

13. Hamid, M. A. K., C. S. Kashyap, and R. V. Cauwenberghe, "Control of grain insects by microwave power," J. Microwave Power, Vol. 3, No. 3, 126-135, 1968.

14. Wang, S., M. Y. G. Monzon, J. Tang, E. J. Mitcham, and J. W. Armstrong, "Temperature-dependent dielectric properties of selected subtropical and tropical fruits and associated insect pests," Transactions of the American Society of Agricultural Engineers, Vol. 48, No. 5, 1873-1881, 2005.

15. Wang, S., J. Tang, J. A. Johnson, J. E. Mitcham, J. D. Hansen, G. Hallman, S. R. Drake, and Y. Wang, "Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments," Biosyst. Eng., Vol. 85, No. 2, 201-212, 2003.

16. Nelson, S. O., P. G. Bartley, Jr., and K. C. Lawrence, "RF and microwave dielectric properties of stored-grain insects and their implications for potential insect control," Transactions of the American Society of Agricultural Engineers, Vol. 41, No. 3, 685-692, 1998.

17. Wang, S., J. Tang, R. P. Cavalieri, and D. C. Davis, "Differential heating of insects in dried nuts and fruits associated with radio frequency and microwave treatments," Transactions of the American Society of Agricultural Engineers, Vol. 46, No. 4, 1175-1182, 2003.

18. Wang, S., M. Monzon, J. A. Johnson, E. J. Mitcham, and J. Tang, "Industrial-scale radio frequency treatments for insect control in walnuts: II. Insect mortality and product quality," Postharvest Biol. Technol., Vol. 45, No. 2, 247-253, 2007.

19. Johnson, J. A., K. A. Valero, S. Wang, and J. Tang, "Thermal death kinetics of red flour beetle (Coleoptera: Tenebrionidae)," J. Econ. Entomol., Vol. 97, No. 6, 1868-1873, 2004.

20. Armstrong, J. W., J. Tang, and S. Wang, "Thermal death kinetics of mediterranean, malaysian, melon, and oriental fruit fly (Diptera: tephritidae) eggs and third instars," J. Econ. Entomol., Vol. 102, No. 2, 522-532, 2009.

21. Abbott, W. S., "A method of computing the effectiveness of an insecticide," J. Am. Mosq. Control. Assoc., Vol. 3, No. 2, 302-303, 1925.

22. Fields, P. G., "The control of stored-product insects and mites with extreme temperatures," Journal of Stored Products Research, Vol. 28, 89-118, 1992.

23. Nelson, S. O., "Review and assessment of radio-frequency and microwave energy for stored-grain insects control," Transactions of the American Society of Agricultural Engineers, Vol. 39, 1475-1485, 1996.

24. Nelson, S. O., "Use of microwave and lower frequency RF energy for improving alfalfa seed germination," Journal of Microwave Power, Vol. 11, No. 3, 271-277, 1976.

25. Nelson, S. O. and E. R. Walker, "Effect of radio frequency electrical seed treatment," Agr. Engr., Vol. 42, No. 12, 688-691, 1961.