PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 145 > pp. 93-113

A RAPID ACCURATE TECHNIQUE TO CALCULATE THE GROUP DELAY, DISPERSION AND DISPERSION SLOPE OF ARBITRARY RADIAL REFRACTIVE INDEX PROFILE WEAKLY-GUIDING OPTICAL FIBERS

By R. Mussina, D. R. Selviah, F. A. Fernandez, A. G. Tijhuis, and B. P. de Hon

Full Article PDF (898 KB)

Abstract:
This paper introduces a new numerical method to calculate the group delay, chromatic dispersion and dispersion slope of weakly-guiding optical fibers with arbitrary radial refractive index profiles. It is based on the analytic differentiation of the propagation coefficient up to the third order. The simulation results are compared to experimental data, with those calculated by other approaches and exact data where possible. Due to the analytical differentiation of the matrix equation, the method is more accurate compared to other approaches, it is also much faster than numerical differentiation as allows avoiding repeated solution of the eigenvalue problem to calculate the derivatives of the propagation coefficient. The precision of the method is limited only by the approximation errors of the mode solver. The Galerkin method with Laguerre-Gauss basis functions is used to determine the propagation coefficients of weakly-guiding structures. The new method enables fiber manufacturers to rapidly design dispersion characteristics of graded index, step index, single- and multiple-clad fibers, as well as few-mode and bend insensitive fibers.

Citation:
R. Mussina, D. R. Selviah, F. A. Fernandez, A. G. Tijhuis, and B. P. de Hon, "A Rapid Accurate Technique to Calculate the Group Delay, Dispersion and Dispersion Slope of Arbitrary Radial Refractive Index Profile Weakly-Guiding Optical Fibers," Progress In Electromagnetics Research, Vol. 145, 93-113, 2014.
doi:10.2528/PIER13031203
http://www.jpier.org/PIER/pier.php?paper=13031203

References:
1. Sammut, R. A., "Analysis of approximations for the mode dispersion in monomode fibres," Electron. Lett., Vol. 15, No. 19, 590-591, 1979.
doi:10.1049/el:19790424

2. Sharma, A. and S. Banerjee, "Chromatic dispersion in single mode fibers with arbitrary index profiles: A simple method for exact numerical evaluation," J. Lightwave Technol., Vol. 7, No. 12, 1919-1923, 1989.
doi:10.1109/50.41610

3. Kim, J. and D. Y. Kim, "An efficient dispersion calculation method for axially symmetric optical fibers," Fiber Integrated Opt., Vol. 21, No. 1, 13-29, 2002.
doi:10.1080/014680302753339376

4. Li, Q. Y., "Propagation characteristics of single-mode optical fibers with arbitrary refractive-index profile: The finite quadratic element approach," J. Lightwave Technol., Vol. 9, No. 1, 22-26, 1991.
doi:10.1109/50.64919

5. Boucouvalas, A. C. and X. Qian, "Mode dispersion and delay characteristics of optical waveguides using equivalent TL circuits," IEEE J. Quantum Electron., Vol. 41, No. 7, 951-957, 2005.
doi:10.1109/JQE.2005.848918

6. Lin, H. Y., R. B. Wu, and H. C. Chang, "An efficient algorithm for determining the dispersion characteristics of single-mode optical fibers," J. Lightwave Technol., Vol. 10, No. 6, 705-711, 1992.
doi:10.1109/50.143068

7. Hermann, W. and D. U. Wiechert, "Refractive-index of doped and undoped PCVD bulk silica," Mater. Res. Bull., Vol. 24, No. 9, 1083-1097, 1989.
doi:10.1016/0025-5408(89)90065-2

8. Sharma, E. K., A. Sharma, and I. C. Goyal, "Propagation characteristics of single-mode optical fibers with arbitrary index profiles: A simple numerical approach," IEEE J. Quantum Electron.,, Vol. 18, No. 10, 1484-1489, 1982.
doi:10.1109/JQE.1982.1071412

9. South, C. R., "Total dispersion in step-index monomode fibres," Electron. Lett., Vol. 15, No. 13, 394-395, 1979.
doi:10.1049/el:19790284

10. Mussina, R., B. P. de Hon, R. W. Smink, and A. G. Tijhuis, "Modal modeling strategies for the design of optical fibers," Proceedings of Annual Symposium of IEEE/LEOS Benelux Chapter, 199-202, University of Twente, The Netherlands, November 27-28, 2008.

11. Mussina, R., D. R. Selviah, F. A. Fernandez, A. G. Tijhuis, and B. P. de Hon, "Numerical modeling method for the dispersion characteristics of single-mode and multimode weakly-guiding optical fibers with arbitrary radial refractive index profiles," Proc. SPIE, Vol. 8619, Physics and Simulation of Optoelectronic Devices XXI, 86191R, March 14, 2013; doi:10.1117/12.2002804; http://dx.doi.org/10.1117/12.2002804.

12. Thyagarajan, K., R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photon. Technol. Lett., Vol. 8, No. 11, 1510-1512, 1996.
doi:10.1109/68.541566

13. Thyagarajan, K. and B. P. Pal, "Modeling dispersion in optical fibers: Applications to dispersion tailoring and dispersion compensation," " J. Opt. Fiber Commun. Rep., Vol. 4, No. 3, 173-213, 2007.
doi:10.1007/s10297-006-0076-2

14. Cohen, L. G. and W. L. Mammel, "Low-loss quadruple-clad single-mode lightguides with dispersion below 2 ps/km nm over the 1.28 μm-1.65 μm wavelength range," Electron. Lett., Vol. 18, No. 24, 1023-1024, 1982..
doi:10.1049/el:19820701

15. Cohen, L. G., W. L. Mammel, and S. Limush, "Tailoring the shapes of dispersion spectra to control bandwidths in single-mode fibers," Opt. Lett., Vol. 7, No. 4, 183-185, 1982.
doi:10.1364/OL.7.000183

16. Etzkorn, H. and W. E. Heinlein, "Low-dispersion single-mode silica fibre with undoped core and three F-doped claddings," Electron. Lett., Vol. 20, No. 10, 423-424, 1984.
doi:10.1049/el:19840293

17. Smink, R. W., B. P. de Hon, M. Bingle, R. Mussina, and A. G. Tijhuis, "Refractive index profile optimisation for the design of optical fibres," Opt. Quant. Electron., Vol. 40, No. 11-12, SPEC. ISS, 837-852, 2008.

18. Correia, D., V. F. Rodriguez-Esquerre, and H. E. Hernandez-Figueroa, "Genetic-algorithm and finite-element approach to the synthesis of dispersion-flattened fiber," Microw. Opt. Technol. Lett., Vol. 31, No. 4, 245-248, 2001.
doi:10.1002/mop.10000

19. Wu, M. S., M. S. Lee, and W. H. Tsai, "Variational analysis of single-mode graded-core W-fibers," J. Lightwave Technol., Vol. 14, No. 1, 121, 1996.
doi:10.1109/50.476145

20. Zhang, X. P. and X. Wang, "The study of chromatic dispersion and chromatic dispersion slope of WI- and WII-type triple-clad single-mode fibers," Opt. Laser Technol., Vol. 37, No. 2, 167-172, 2005.
doi:10.1016/j.optlastec.2004.03.006

21. Shahoei, H., H. Ghafoori-Fard, and A. Rostami, "A novel design methodology of multi-clad single mode optical fiber for broadband optical networks," Progress In Electromagnetics Research, Vol. 80, 253-275, 2008.
doi:10.2528/PIER07111003

22. Rostami, A. and S. Makouei, "Modified W-type single-mode optical fiber design with ultra-low, flattened chromatic dispersion and ultra-high effective area for high bit rate long haul communications," Progress In Electromagnetics Research C, Vol. 12, 79-92, 2010.
doi:10.2528/PIERC09090603

23. Hooda, B. and V. Rastogi, "Segmented-core single mode optical fiber with ultra-large-effective-area, low dispersion slope and °attened dispersion for DWDM optical communication systems," Progress In Electromagnetics Research B, Vol. 51, 157-175, 2013.
doi:10.2528/PIERB13032206

24. Sharma, A. and J. P. Meunier, "On the scalar modal analysis of optical waveguides using approximate methods," Opt. Commun., Vol. 281, No. 4, 592-599, 2008.
doi:10.1016/j.optcom.2007.10.016

25. Meunier, J. P., J. Pigeon, and J. N. Massot, "A general approach to the numerical determination of modal propagation constants and field distributions of optical fibres," Opt. Quant. Electron., Vol. 13, No. 1, 71-83, 1981.
doi:10.1007/BF00620032

26. Georg, O., "Use of the orthogonal system of Laguerre-Gaussian functions in the theory of circularly symmetric optical waveguides," Appl. Optics, Vol. 21, No. 1, 141-146, 1982.
doi:10.1364/AO.21.000141

27. Okamoto, K. and T. Okoshi, "Analysis of wave propagation in optical fibers having core with alpha-power refractive-index distribution and uniform cladding," IEEE Trans. on Microw. and Theory, Vol. 24, No. 7, 416-421, 1976.
doi:10.1109/TMTT.1976.1128869

28. Meunier, J. P., J. Pigeon, and J. N. Massot, "A numerical technique for the determination of propagation characteristics of inhomogeneous planar optical waveguides," Opt. Quant. Electron., Vol. 15, 77-85, 1983.
doi:10.1007/BF00620236

29. Weisshaar, A., J. Li, R. L. Gallawa, and I. C. Goyal, "Vector and quasi-vector solutions for optical waveguide modes using efficient Galerkin's method with Hermite-Gauss basis functions," J. Lightwave Technol., Vol. 13, No. 8, 1795-1800, 1995.
doi:10.1109/50.405326

30. Wang, Z. H., H. Zhang, and J. P. Meunier, "Improved Ritz-Galerkin method for field distribution of graded-index optical fibers," Microw. Opt. Technol. Lett., Vol. 37, 433-436, 2003.
doi:10.1002/mop.10941

31. Gallawa, R. L., I. C. Goyal, Y. Tu, and A. K. Ghatak, "Optical waveguide modes: An approximate solution using Galerkin's method with Hermite-Gauss basis functions," IEEE J. Quantum Electron., Vol. 27, No. 3, 518-522, 1991.
doi:10.1109/3.81357

32. Rasmussen, T., J. H. Povlsen, A. Bjarklev, O. Lumholt, B. Pedersen, and K. Rottwitt, "Detailed comparison of two approximate methods for the solution of the scalar wave-equation for a rectangular optical wave-guide," J. Lightwave Technol., Vol. 11, No. 3, 429-433, 1993.
doi:10.1109/50.219576

33. Barai, S. and A. Sharma, "Wavelet-Galerkin solver for the analysis of optical waveguides," J. Opt. Soc. Am. A, Vol. 26, No. 4, 931-937, 2009.
doi:10.1364/JOSAA.26.000931

34. Erteza, I. and J. W. Goodman, "A scalar variational analysis of rectangular dielectric waveguides using Hermite-Gaussian modal approximations," J. Lightwave Technol., Vol. 13, No. 3, 493-506, 1995.
doi:10.1109/50.372447

35. Meunier, J. P. and S. I. Hosain, "An accurate splice loss analysis for single-mode graded-index fibers with mismatched parameters," J. Lightwave Technol., Vol. 10, No. 11, 1521-1526, 1992.
doi:10.1109/50.184887

36. Silvestre, E., T. Pinheiro-Ortega, P. Andres, J. J. Miret, and A. Ortigosa-Blanch, "Analytical evaluation of chromatic dispersion in photonic crystal fibers," Opt. Lett., Vol. 30, No. 5, 453-455, 2005.
doi:10.1364/OL.30.000453

37. Snyder, A. W. and J. D. Love, Optical Waveguide Theory, Chapman and Hall, London, 1983.

28. Wu, B. S., Z. H. Xu, and Z. G. Li, "A note on computing eigenvector derivatives with distinct and repeated eigenvalues," Commun. Numer. Meth. En., Vol. 23, No. 3, 241-251, 2007.
doi:10.1002/cnm.895

39. Cho, J., C. T. Sun, and R. B. Nelson, "Simplified calculation of eigenvector derivatives," AIAA J., Vol. 14, No. 9, 1201-1205, 1976.
doi:10.2514/3.7211

40. Fleming, J. W., "Material dispersion in lightguide glasses," Electron. Lett., Vol. 14, No. 11, 326-328, 1978.
doi:10.1049/el:19780222

41. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th Printing, Dover, New York, 1972.

42. Yamada, R., "Guided waves along an optical fiber with parabolic index profile," J. Opt. Soc. Am., Vol. 67, No. 1, 96-103, 1977.
doi:10.1364/JOSA.67.000096

43. Fernandez, F. A. and Y. Lu, Microwave and Optical Waveguide Analysis by the Finite Element Method, Wiley, New York, 1996.

44. Olshansky, R., "Propagation in glass optical waveguides," Reviews of Modern Physics, Vol. 51, No. 2, 341-367, 1979.
doi:10.1103/RevModPhys.51.341

45. Senior, J. M., Optical Fiber Communications: Principles and Practice, 3rd Ed., Pearson Education Limited, 2009.

46. Gambling, W. A., H. Matsumura, and C. M. Ragdale, "Mode dispersion, material dispersion and profile dispersion in graded-index single-mode fibres," IEE Proc. --- H, Vol. 3, No. 6, 239-246, 1979.


© Copyright 2014 EMW Publishing. All Rights Reserved