Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 139 > pp. 177-192


By A. Daliri, A. Galehdar, W. S. T. Rowe, K. Ghorbani, S. John, and C. H. Wang

Full Article PDF (944 KB)

The utility of slotted waveguide antennas would be maximized if the bandwidth of the radiating elements matched that available in the waveguide. This was achieved using a spiral shaped slot cut through the broad-wall of a rectangular waveguide. The predicted total efficiency and peak realized gain were relatively uniform across the entire bandwidth. The current distribution around the slot was predicted to be similar to that around a conventional, center fed, slot spiral antenna, indicating similarity of radiation mechanisms. Finally, the antenna patterns for spiral shaped slots in waveguides manufactured from copper and carbon fibre reinforced polymer (CFRP) were shown to be similar to that predicted.

A. Daliri, A. Galehdar, W. S. T. Rowe, K. Ghorbani, S. John, and C. H. Wang, "A Spiral Shaped Slot as a Broad-Band Slotted Waveguide Antenna," Progress In Electromagnetics Research, Vol. 139, 177-192, 2013.

1. Callus, P. J., Novel Concepts for Conformal Load-bearing Antenna Structure, Tech. Rep. DSTO-TR-2096, DSTO Air Vehicles Div., Melbourne, VIC, Feb. 2008, http://hdl.handle.net/1947/9300.

2. Rengarajan, S. R., S. R., L. G. Josefsson, and R. S. Elliott, "Waveguide-fed slot antennas and arrays: A review," Electromagnetics, Vol. 19, No. 1, 3-22, 1999.

3. Forrester, R. W. and D. R. Morgan, "The mechanical design and manufacture of a high performance airborne radar antenna," Proc. IEE Colloquium on Mechanical Aspects of Antenna Design, 11/1-11/5, London, Apr. 1989.

4. Solbach, K., "Below-resonant-length slot radiators for traveling-wave-array antennas," IEEE Antennas and Propagation Mag., Vol. 38, No. 1, 7-14, 1996.

5. Wagner, R. and H. M. Braun, "A slotted waveguide array antenna from carbon fibre reinforced plastics for the European space SAR," Acta Astronautica, Vol. 8, No. 3, 273-282, 1981.

6. Noble, W. J. and J. W. Small, "Lightweight Compos-ite Slotted-waveguide Antenna and Method of Manufacture," US Patent 4255752, Mar. 10, 1981.

7. Callus, P. J. and K. J. Nicholson, Standard Operating Procedure - Manufacture of Carbon Fibre Reinforced Plastic Waveguides and Slotted Waveguide Antennas, Tech. Note DSTO-TN-0937, Version 1.0, DSTO Air Vehicles Div., Melbourne, VIC, Jun. 2011, http://hdl.handle.net/1947/10149.

8. Gray, D., K. J. Nicholson, K. Ghorbani, and P. J. Callus, "Carbon fibre reinforced plastic slotted waveguide antenna," Proc. Asia-Pacific Microwave Conf., 307-310, Yokohama, Dec. 2010.

9. Nicholson, K. J. and P. J. Callus, "Antenna Patterns from Single Slots in Carbon Fibre Reinforced Plastic Waveguides," Tech. Rep. DSTO-TR-2389, DSTO Air Vehicles Div., Melbourne, VIC, Feb. 2010, http://hdl.handle.net/1947/10048.

10. Dyson, J., "The equiangular spiral antenna," IRE Trans. Antennas and Propagation, Vol. 7, No. 2, 181-187, 1959.

11. Turner, E. M., Spiral Slot Antenna, US Patent 2863145, Dec. 2, 1958.

12. Amin, Y., Q. Chen, L. R. Zheng, and H. Tenhunen, "Design and fabrication of wideband archimedean spiral antenna based ultra-low cost \green" modules for RFID sensing and wireless applications," Progress In Electromagnetics Research, Vol. 130, 241-256, 2012.

13. Ando, M., K. Sakurai, N. Goto, K. Arimura, and Y. Ito, "A radial line slot antenna for 12 GHz satellite TV reception," IEEE Trans. Antennas and Propagation, Vol. 33, No. 12, 1347-1353, 1985.

14. Takahashi, M., J. I. Takada, M. Ando, and N. Goto, "A slot design for uniform aperture field distribution in single-layered radial line slot antennas," IEEE Trans. Antennas and Propagation, Vol. 39, No. 7, 954-959, 1991.

15. Ghafoorzadeh, A. and K. Forooraghi, "Analysis of an inclined emi-circular slot in the narrow wall of a rectangular waveguide," Progress In Electromagnetics Research, Vol. 90, 323-339, 2009.

16. Salman, A. O., "Millimeter-wave sinusoidal slotted waveguide antenna," Int. Kharkov Symp. Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW), 1-4, Kharkiv, Jun. 2010.

17. Daliri, A., A. Galehdar, C. H. Wang, W. S. T. Rowe, S. John, K. Ghorbani, and P. J. Callus, "FEA evaluation of mechanical and electromagnetic performance of slot log-spiral CLAS," Proc. the ASME Conf. Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS), Phoenix, Sep. 2011.

18. Galehdar, A., W. S. T. Rowe, K. Ghorbani, P. J. Callus, S. John, and C. H.Wang, "The effect of ply orientation on the performance of antennas in or on carbon fiber composites," Progress In Electromagnetics Research, Vol. 116, 123-136, 2011.

19. Bojovschi, A., K. J. Nicholson, A. Galehdar, P. J. Callus, and K. Ghorbani, "The role of fibre orientation on the electromagnetic performance of waveguides manufactured from carbon fibre reinforced plastic," Progress In Electromagnetics Research B, Vol. 39, 267-280, 2012.

20. De Paulis, F., M. H. Nisanci, M. Y. Koledintseva, J. L. Drewniak, and A. Orlandi, "Homogenized permittivity of composites with aligned cylindrical inclusions for causal electromagnetic simulations," Progress In Electromagnetics Research B, Vol. 37, 205-235, 2012.

21. Matrosov, S. Y., "Prospects for the measurement of ice cloud particle shape and orientation with elliptically polarized radar signals," Radio Science, Vol. 26, No. 4, 847-856, 1991.

22. Krofli, R. A. and R. D. Kelly, "Meteorological research applications of mm-wave radar," Meteorology and Atmospheric Physics, Vol. 59, 105-121, 1996.

© Copyright 2014 EMW Publishing. All Rights Reserved