PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 139 > pp. 479-498

APPLICATIONS OF THE DISCRETE GREEN'S FUNCTION IN THE FINITE-DIFFERENCE TIME-DOMAIN METHOD

By T. P. Stefanski

Full Article PDF (417 KB)

Abstract:
In this paper, applications of the discrete Green's function (DGF) in the three-dimensional (3-D) finite-difference time-domain (FDTD) method are presented. The FDTD method on disjoint domains was developed employing DGF to couple the subdomains as well as to compute the electromagnetic field outside these subdomains. Hence, source and scatterer are simulated in separate subdomains and updating of vacuum cells, being of little interest from a user point of view, can be avoided. In the developed method, the field radiated by a single subdomain is computed as a convolution of DGF with equivalent current sources measured over two displaced Huygens surfaces. Therefore, the computed electromagnetic field is compatible with the FDTD grid and can be applied as an incident wave in a coupled total-field/scattered-field (TFSF) subdomain. In the developed method, the DGF waveforms are truncated using the Hann's window and windowing parameters assuring accuracy of computations are pointed out. The error of the field computations varies between -90 dB and -40 dB depending on the DGF length and excitation waveform. However, if the DGF length is equal to the number of iterations in a simulation, the presented DGF applications return the same results as the direct FDTD method.

Citation:
T. P. Stefanski, "Applications of the Discrete Green's Function in the Finite-Difference Time-Domain Method," Progress In Electromagnetics Research, Vol. 139, 479-498, 2013.
doi:10.2528/PIER13032906
http://www.jpier.org/PIER/pier.php?paper=13032906

References:
1. Vazquez, J. and C. G. Parini, "Discrete Green's function formulation of FDTD method for electromagnetic modelling," Electron. Lett., Vol. 35, No. 7, 554-555, 1999.
doi:10.1049/el:19990416

2. Holtzman, R. and R. Kastner, "The time-domain discrete Green's function method (GFM) characterizing the FDTD grid boundary," IEEE Trans. Antennas Propag., Vol. 49, No. 7, 1079-1093, 2001.
doi:10.1109/8.933488

3. Holtzman, R., R. Kastner, E. Heyman, and R. W. Ziolkowski, "Stability analysis of the Green's function method (GFM) used as an ABC for arbitrarily shaped boundaries," IEEE Trans. Antennas Propag., Vol. 50, No. 7, 1017-1029, 2002.
doi:10.1109/TAP.2002.802272

4. Jeng, S.-K., "An analytical expression for 3-D dyadic FDTD-compatible Green's function in infinite free space via z-transform and partial difference operators," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1347-1355, 2011.
doi:10.1109/TAP.2011.2109363

5. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd edition, Artech House, Boston, 2005.

6. Xiao, S.-Q., Z. Shao, and B.-Z. Wang, "Application of the improved matrix type FDTD method for active antenna analysis," Progress In Electromagnetics Research, Vol. 100, 245-263, 2010.
doi:10.2528/PIER09112204

7. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.

8. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702

9. Xiong, R., B. Chen, J.-J. Han, Y.-Y. Qiu, W. Yang, and Q. Ning, "Transient resistance analysis of large grounding systems using the FDTD method," Progress In Electromagnetics Research, Vol. 132, 159-175, 2012.

10. Noroozi, Z. and F. Hojjat-Kashani, "Three-dimensional FDTD analysis of the dual-band implantable antenna for continuous glucose monitoring," Progress In Electromagnetics Research Letters, Vol. 28, 9-21, 2012.
doi:10.2528/PIERL11070113

11. Wahl, P., D. S. Ly Gagnon, C. Debaes, J. Van Erps, N. Vermeulen, D. A. B. Miller, and H. Thienpont, "B-calm: An open-source multi-gpu-based 3D-FDTD with multi-pole dispersion for plasmonics," Progress In Electromagnetics Research, Vol. 138, 467-478, 2013.

12. Ma, W., M. R. Rayner, and C. G. Parini, "Discrete Green's function formulation of the FDTD method and its application in antenna modeling," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 339-346, 2005.
doi:10.1109/TAP.2004.838797

13. Vazquez, J. and C. G. Parini, "Antenna modelling using discrete Green's function formulation of FDTD method," Electron. Lett., Vol. 35, No. 13, 1033-1034, 1999.
doi:10.1049/el:19990741

14. Holtzman, R., R. Kastner, E. Heyman, and R. W. Ziolkowski, "Ultra-wideband cylindrical antenna design using the Green's function method (GFM) as an absorbing boundary condition (ABC) and the radiated field propagator in a genetic optimization," Microw. Opt. Tech. Lett., Vol. 48, No. 2, 348-354, 2006.
doi:10.1002/mop.21346

15. Mirhadi, S., M. Soleimani, and A. Abdolali, "An FFT-based approach in acceleration of discrete Green's function method for antenna analysis," Progress In Electromagnetics Research M, Vol. 29, 17-28, 2013.

16. Tan, T. and M. Potter, "Optimized analytic field propagator (O-AFP) for plane wave injection in FDTD simulations," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 824-831, 2010.
doi:10.1109/TAP.2009.2039310

17. Merewether, D. E. and R. Fisher, "An application of the equivalence principle to the finite-difference analysis of EM fields inside complex cavities driven by large apertures," Proc. IEEE Antennas Propag. Soc. Int. Symp., 495-498, 1982.

18. Schneider, J. B. and K. Abdijalilov, "Analytic field propagation TFSF boundary for FDTD problems involving planar interfaces: PECs, TE, and TM," IEEE Trans. Antennas Propag., Vol. 54, No. 9, 2531-2542, 2006.
doi:10.1109/TAP.2006.880757

19. Chew, W. C., "Electromagnetic theory on a lattice," Journal of Applied Physics, Vol. 75, No. 10, 4843-4850, 1994.
doi:10.1063/1.355770

20. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103

21. Schuhmann, R. and T. Weiland, "Conservation of discrete energy and related laws in the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 301-316, 2001.
doi:10.2528/PIER00080112

22. Bossavit, A., "Generalized finite differences' in computational electromagnetics," Progress In Electromagnetics Research, Vol. 32, 45-64, 2001.
doi:10.2528/PIER00080102

23. Teixeira, F. L., "Geometric aspects of the simplicial discretization of Maxwell's equations," Progress In Electromagnetics Research, Vol. 32, 171-188, 2001.
doi:10.2528/PIER00080107

24. Mouysset, V. P., A. Mazet, and P. Borderies, "Efficient treatment of 3D time-domain electromagnetic scattering scenes by disjointing sub-domains and with consistent approximations," Progress In Electromagnetics Research, Vol. 71, 41-57, 2007.
doi:10.2528/PIER07013005

25. De Hon, B. P. and J. M. Arnold, "Stable FDTD on disjoint domains - A discrete Green's function diakoptics approach," Proc. The 2nd European Conf. on Antennas and Propag. (EuCAP), 1-6, 2007.

26. Murbach, M., E. Cabot, E. Neufeld, M.-C. Gosselin, A. Christ, K. P. Pruessmann, and N. Kuster, "Local SAR enhancements in anatomically correct children and adult models as a function of position within 1.5T MR body coil," Progress in Biophysics and Molecular Biology, Vol. 107, No. 3, 428-433, 2011.
doi:10.1016/j.pbiomolbio.2011.09.017

27. Benkler, S., N. Chavannes, and N. Kuster, "Novel FDTD Huygens source enables highly complex simulation scenarios on ordinary PCs," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, 2009.

28. Stefanski, T. P., "Discrete Green's function approach to disjoint domain simulations in 3D FDTD method," Electron. Lett., Vol. 49, No. 9, 597-599, 2013.
doi:10.1049/el.2012.4462

29. Merewether, D. E., R. Fisher, and F. W. Smith, "On implementing a numeric Huygen's source scheme in a finite difference program to illuminate scattering bodies," IEEE Trans. Nucl. Sci., Vol. 27, No. 6, 1829-1833, 1980.
doi:10.1109/TNS.1980.4331114

30. Martin, T., "An improved near- to far-zone transformation for the finite-difference time-domain method," IEEE Trans. Antennas Propag., Vol. 46, No. 9, 1263-1271, 1998.
doi:10.1109/8.719968

31. Stefanski, T. P., "Fast implementation of the FDTD-compatible Green's function on multicore processor," IEEE Antennas Wireless Propag. Lett., Vol. 11, 81-84, 2012.
doi:10.1109/LAWP.2012.2183632

32. Stefanski, T. P. and K. Krzyzanowska, "Implementation of FDTD-compatible Green's function on graphics processing unit," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1422-1425, 2012.
doi:10.1109/LAWP.2012.2229380

33. Stefanski, T. P., "Implementation of FDTD-compatible Green's function on heterogeneous CPU-GPU parallel processing system," Progress In Electromagnetics Research, Vol. 135, 297-316, 2013.

34. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-time Signal Processing, 2nd edition, Prentice-Hall, Englewood Cliffs, 1999.

35. Lei, J.-Z., C.-H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 85-112, 2007.
doi:10.2528/PIER07041905

36. Stefanski, T. P., "Accuracy of the discrete Green's function ormulation of the FDTD method," IEEE Trans. Antennas Propag., Vol. 61, 829-835, 2013.
doi:10.1109/TAP.2012.2224837

37. Laakso, T. I., V. Valimaki, M. Karjalainen, and U. K. Laine, "Splitting the unit delay," IEEE Signal Proc. Mag., Vol. 13, No. 1, 30-60, 1996.
doi:10.1109/79.482137

38. Schneider, J. B. and C. L. Wagner, "FDTD dispersion revisited: Faster-than-light propagation," IEEE Microwave and Guided Wave Lett., Vol. 9, No. 2, 54-56, 1999.
doi:10.1109/75.755044

39. Olkkonen, J. T. and H. Olkkonen, "Fractional delay filter based on the B-spline transform," IEEE Signal Proc. Lett., Vol. 14, No. 2, 97-100, 2007.
doi:10.1109/LSP.2006.882103

40. Olkkonen, J. T. and H. Olkkonen, "Fractional time-shift B-spline filter," IEEE Signal Proc. Lett., Vol. 14, No. 10, 688-691, 2007.
doi:10.1109/LSP.2007.896402


© Copyright 2014 EMW Publishing. All Rights Reserved