PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 139 > pp. 577-597

IMPLEMENTATION AND APPLICATION OF THE SPHERICAL MRTD ALGORITHM

By Y. Liu, Y.-W. Chen, P. Zhang, and X. Xu

Full Article PDF (655 KB)

Abstract:
This paper illustrates an explicit multiresolution time-domain (MRTD) scheme based on Daubechies' scaling functions with a spherical grid for time-domain Maxwell's equations. The stability and dispersion property of the scheme are investigated and it is shown that larger cells decrease the numerical phase error, which makes it significantly lower than FDTD for low and medium discretizations. Moreover, this technique is applied to the modeling of an air-filled spherical resonator, and numerical results demonstrate the effectiveness of the proposed algorithm.

Citation:
Y. Liu, Y.-W. Chen, P. Zhang, and X. Xu, "Implementation and Application of the Spherical MRTD Algorithm," Progress In Electromagnetics Research, Vol. 139, 577-597, 2013.
doi:10.2528/PIER13040103
http://www.jpier.org/PIER/pier.php?paper=13040103

References:
1. Krumpholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 4, 555-561, Apr. 1996.
doi:10.1109/22.491023

2. Sirenko, K., V. Pazynin, Y. K. Sirenko, and H. Bagci, "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.
doi:10.2528/PIER10102707

3. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.

4. Izadi, M., M. Z. A. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011.

5. Vaccari, A., A. Cala' Lesina, L. Cristoforetti, and R. Pontalti, "Parallel implementation of a 3D subgridding FDTD algorithm for large simulations," Progress In Electromagnetics Research, Vol. 120, 263-292, 2011.

6. Kong, Y.-D. and Q.-X. Chu, "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.
doi:10.2528/PIER11082512

7. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing sar distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702

8. Mao, Y., B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for oblique incidence problems on periodic structures," Progress In Electromagnetics Research, Vol. 128, 153-170, 2012.

9. Wang, J.-B., B.-H. Zhou, L.-H. Shi, C. Gao, and B. Chen, "A novel 3-D weakly conditionally stable FDTD algorithm," Progress In Electromagnetics Research, Vol. 130, 525-540, 2012.

10. Xiong, R., B. Chen, Y. Mao, B. Li, and Q.-F. Jing, "A simple local approximation FDTD model of short apertures with a finite thickness," Progress In Electromagnetics Research, Vol. 131, 135-152, 2012.

11. Xiong, R., B. Chen, J.-J. Han, Y.-Y. Qiu, W. Yang, and Q. Ning, "Transient resistance analysis of large grounding systems using the FDTD method," Progress In Electromagnetics Research, Vol. 132, 159-175, 2012.

12. Gradoni, G., V. Mariani Primiani, and F. Moglie, "Reverberation chamber as a multivariate process: FDTD evaluation of correlation matrix and independent positions," Progress In Electromagnetics Research, Vol. 133, 217-234, 2013.

13. Kong, Y.-D., Q.-X. Chu, and R.-L. Li, "High-order unconditionally-stable four-step ADI-FDTD methods and numerical analysis," Progress In Electromagnetics Research, Vol. 135, 713-734, 2013.

14. Chun, K., H. Kim, H. Kim, and Y. Chung, "PLRC and ADE implementations of Drude-critical point dispersive model for the FDTD method," Progress In Electromagnetics Research, Vol. 135, 373-390, 2013.

15. Stefanski, T. P., "Implementation of FDTD-compatible Green's function on heterogeneous CPU-GPU parallel processing system," Progress In Electromagnetics Research, Vol. 135, 297-316, 2013.

16. Wang, W., P.-G. Liu, and Y.-J. Qin, "An unconditional stable 1D-FDTD method for modeling transmission lines based on precise split-step scheme," Progress In Electromagnetics Research, Vol. 135, 245-260, 2013.

17. Donelli, M., I. Craddock, D. Gibbins, and M. Sarafianou, "A three dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetic Research M, Vol. 18, 193-195, 2011.

18. Johnson, J., T. Takenaka, K. A. Hong Ping, S. Honda, and T. Tanaka, "Advances in the 3-D forward-backward time stepping (FBTS) inverse scattering technique for breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 56, No. 9, 2232-2242, 2009.
doi:10.1109/TBME.2009.2022635

19. Moriyama, T., T. Takenaka, and Z. Meng, "Forward-backward time stepping method combined with genetic algorithm applied to breast cancer detection," Microwave and Optical Technology Letters, Vol. 53, No. 2, 438-442, 2009.
doi:10.1002/mop.25699

20. Cheong, Y. W., Y. M. Lee, K. H. Ra, J. G. Kang, and C. C. Shin, "Wavelet-Galerkin scheme of time-dependent inhomogeneous electromagnetic problems," IEEE Microwave Guided Wave Lett., Vol. 9, No. 8, 297-299, Aug. 1999.
doi:10.1109/75.779907

21. Fujii, M. and W. J. R. Hoefer, "Dispersion of time domain wavelet Galerkin method based on Daubechies' compactly supported scaling functions with three and four vanishing moments," IEEE Microwave Guided Wave Lett., Vol. 10, No. 4, 125-127, Apr. 2000.
doi:10.1109/75.846920

22. Sweldens, W. and R. Piessens, "Wavelet sampling techniques," Proc. Statistical Computing Section, 20-29, 1993.

23. Holland, R., "THREDS: A finite-difference time-domain EMP codein 3D spherical coordinates," IEEE Trans. Nucl. Sci., Vol. 30, 4592-4595, 1983.
doi:10.1109/TNS.1983.4333177

24. Tentzeris, E. M., R. L. Robertson, J. F. Harvey, and L. P. B. Katehi, "Stability and dispersion analysis of Battle-Lemarie-based MRTD schemes," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 7, 1004-1013, Jul. 1999.
doi:10.1109/22.775432

25. Taflove, A., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 1995.

26. Shlager, K. L. and J. B. Schneider, "Comparison of the dispersion properties of higher order FDTD schemes and equivalent-sized MRTD schemes," IEEE Trans. Antenna Propagat., Vol. 52, No. 4, 1095-1104, Apr. 2004.
doi:10.1109/TAP.2004.825811

27. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.

28. Teixeira, F. L. and W. C. Chew, "PML-FDTD in cylindrical and spherical grids," IEEE Microwave Guided Wave Lett., Vol. 7, No. 9, 285-287, Sep. 1997.
doi:10.1109/75.622542


© Copyright 2014 EMW Publishing. All Rights Reserved