PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 140 > pp. 653-680

CIRCULARLY ARCED KOCH FRACTAL MULTIBAND MULTIMODE MONOPOLE ANTENNA

By D. Li and J.-F. Mao

Full Article PDF (836 KB)

Abstract:
Circularly arced Koch fractal curve (CAKC) is originally proposed. Then, a novel wire dipole is formed with Ki-iterated CAKC. The dipole is experimentally studied for fractal electrical characteristics revealing. It manifests many unique properties, such as multiband resonance at odd times of half-wavelength. In particular, it unprecedentedly presents normal mode (0.5.λ) and axial mode (1.5.λ) simultaneously. Thus, K2 CAKC wire is configured into folded monopole with circular disc ground for omni-directional and directive radiation. Five matched bands (S11≤-10 dB) are obtained within 1 GHz-10 GHz, of which f1=1.31 GHz, f2=3.14 GHz, f3=3.63 GHz, f4=4.65 GHz, and f5=7.71 GHz. Compared with conventional wire monopole (0.25.λ), this fractal monopole shows 31% height reduction. It has dipole-like patterns at f1 and f2, endfire patterns at f3 and f4 with high gain (10 dBi), and off-endfire patterns at f5. Moreover, the fractal antenna possesses compactness, lightweight, simplicity, and low cost. So, it is an attractive candidate for multiband and multifunction antennas, such as satellite antennas, of which omni-directional normal mode and directive axial mode are needed for beaconing and communication respectively.

Citation:
D. Li and J.-F. Mao, "Circularly Arced Koch Fractal Multiband Multimode Monopole Antenna," Progress In Electromagnetics Research, Vol. 140, 653-680, 2013.
doi:10.2528/PIER13040401
http://www.jpier.org/PIER/pier.php?paper=13040401

References:
1. Cohen, N., "Fractal antennas: Part 1," Communications Quarterly, 7-22, Aug. 1995.

2. Cohen, N., "Fractal antenna applications in wireless telecommunications," IEEE Electronics Industries Forum of New England, 43-49, May 1997.

3. Werner, D. H., R. L. Haup, and P. L. Werner, "Fractal antenna engineering: The theory and design of fractal antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 41, No. 5, 37-58, Oct. 1999.
doi:10.1109/74.801513

4. Werner, D. H. and S. Ganguly, "An overview of fractal antenna engineering research," IEEE Antennas and Propagation Magazine, Vol. 45, No. 1, 38-57, Feb. 2003.
doi:10.1109/MAP.2003.1189650

5. Gianvitorio, J. and Y. Rahmat, "Fractal antennas: A novel antenna miniaturization technique and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, Feb. 2002.
doi:10.1109/74.997888

6. Anguera, J., C. Puente, C. Borja, and J. Soler, "Fractal-shaped antennas: A review," Wiley Encyclopedia of RF and Microwave Engineering, Vol. 2, 1620-1635, Apr. 2005.

7. Liu, Y., S. Gong, and D. Fu, "The advances in development of fractal antennas," Chinese Journal of Radio Science, Vol. 17, No. 1, Feb. 2002.

8. Puente, C., J. Romeu, R. Pous, and A. Cardama, "On the behavior of the Sierpinski multiband fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 46, 517-524, Apr. 1998.
doi:10.1109/8.664115

9. Sinha, S. N. and M. Jain, "A self-affine fractal multiband antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 110-112, Apr. 2007.
doi:10.1109/LAWP.2007.891519

10. Manimegalai, B., S. Raju, and V. Abhaikumar, "A multifractal Cantor antenna for multiband wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 359-362, Aug. 2009.
doi:10.1109/LAWP.2008.2000828

11. Mandelbrot, B. B., The Fractal Geometry of Nature, 2nd Ed., W. H. Freeman, New York, 1983.

12. Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, 2nd Ed., John Wiley & Son, Inc, New York, 2003.

13. Baliarda, C. P., J. Romeu, and A. Cardama, "The Koch monopole: A small fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 11, 1773-1781, Nov. 2000.
doi:10.1109/8.900236

14. Li, D. and J. F. Mao, "A Koch-like sided bow-tie fractal dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 40-49, May 2012.

15. Mirzapour, B. and H. R. Hassani, "Size reduction and bandwidth enhancement of snowflake fractal antenna," IET Microwaves, Antennas and Propagation, Vol. 2, No. 2, 180-187, Mar. 2008.
doi:10.1049/iet-map:20070133

16. Mahatthanajatuphat, C., S. Saleekaw, P. Akkaraekthalin, and M. Krairiksh, "A rhombic patch monopole antenna with modified Minkowski fractal geometry for UMTS, WLAN, and mobile WiMAX application ," Progress In Electromagnetics Research, Vol. 89, 57-74, 2009.
doi:10.2528/PIER08111907

17. Oraizi, H. and S. Hedayati, "Miniaturized UWB monopole microstrip antenna design by the combination of Giusepe Peano and Sierpinski carpet fractals," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 67-70, 2011.
doi:10.1109/LAWP.2011.2109030

18. Ghatak, R., A. Karmakar, and D. R. Poddar, "A circularshaped Sierpinski carpet fractal UWB monopole antenna with band rejection capability," Progress In Electromagnetics Research C, Vol. 24, 221-234, 2011.
doi:10.2528/PIERC11082801

19. Ghatak, R., A. Karmakar, and D. R. Poddar, "Hexagonal boundary Sierpinski carpet fractal shaped compact ultrawideband antenna with band rejection functionality," Int J. Electron Commun (AEÜ), Vol. 67, 250-255, 2013.
doi:10.1016/j.aeue.2012.08.007

20. Li, D. and J. F. Mao, "Sierpinskized Koch-like sided multifractal dipole antenna," Progress In Electromagnetics Research, Vol. 130, 204-227, Aug. 2012.

21. Vinoy, K. J., "Fractal shaped antenna elements for wide and multiband wireless applications," [D] The Graduate School College of Engineering, The Pennsylvania State University, Aug. 2002.

22. Zhu, J., A. Hoorfar, and N. Engheta, "Peano antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 71-74, 2004.

23. Gonzalez-Arbesu, J. M., S. Blanch, and J. Romeu, "The Hilbert curve as a small self-resonant monopole from a practical point of view," Microwave and Optical Technology Letters, Vol. 39, No. 1, 45-49, Oct. 2003.
doi:10.1002/mop.11122

24. Zhu, J., A. Hoorfar, and N. Engheta, "Bandwidth, cross polarization and feed-point characteristics of matched Hilbert antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 2, No. 1, 2-5, Jan. 2003.
doi:10.1109/LAWP.2003.810765

25. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2296-2303, Sep. 2003.
doi:10.1109/TAP.2003.816352

26. Li, D. and J. F. Mao, "Koch-like sided Sierpinski gasket multifractal dipole antenna," Progress In Electromagnetics Research, Vol. 26, 399-427, Apr. 2012.
doi:10.2528/PIER12010404

27. http://www.radio-electronics.com/info/antennas/dipole/folded d ipole.php.

28. Patnam, R. H., "Broadband CPW-fed planar Koch fractal loop antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 7, No. 2, 429-431, May 2008.
doi:10.1109/LAWP.2008.2001968

29. Mustafa, K. T., "Combined fractal dipole wire antenna," The Second International ITG Conference on Antennas, Vol. 2, 176-180, Mar. 2007.

30. Best, S. R., "A discussion on the significance of geometry in determining the resonant behavior of fractal and other non-Euclidean wire antennas," IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, 9-28, Jun. 2003.
doi:10.1109/MAP.2003.1232160

31. Werner, D. H., R. L. Haupt, and P. L. Werner, "Fractal antenna engineering: The theory and design of fractal antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 41, No. 5, 37-58, Oct. 1999.
doi:10.1109/74.801513

32. Siakavara, K., "Hybrid-fractal direct radiating antenna arrays with small number of elements for satellite communications," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 2102-2106, Jun. 2010.
doi:10.1109/TAP.2010.2046868

33. Werner, D. H., W. Kuhirun, and P. L. Werner, "The Peano-Gosper fractal array," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 2063-2072, Aug. 2003.
doi:10.1109/TAP.2003.815411

34. Altshuler, E. E., "Hemispherical coverage using a double-folded monopole," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 8, 1112-1119, Aug. 1996.
doi:10.1109/8.511819

35. Jung, J., K. Seol, W. Choi, and J. Choi, "Wideband monopole an- tenna for various mobile communication applications," Electronics Letters, Vol. 41, No. 24, 1313-1214, Nov. 2005.
doi:10.1049/el:20053114

36. Lee, W. S., K. S. Oh, and J. W. Yu, "A wideband planar monopole antenna array with circular polarized and band-notched characteristics," Progress In Electromagnetics Research, Vol. 128, 381-398, 2012.

37. Liu, J., K. P. Esselle, S. G. Hay, and S. S. Zhong, "Study of an extremely wideband monopole antenna with triple band-notched charactersistics," Progress In Electromagnetics Research, Vol. 123, 143-158, 2012.
doi:10.2528/PIER11110401

38. Xu, H. X., G. M. Wang, Y. Y. Lv, M. Q. Qi, X. Gao, and S. Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 705-725, 2013.


© Copyright 2014 EMW Publishing. All Rights Reserved