Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 142 > pp. 291-308


By Y. Ren, J. Wang, D.-C. Hu, and N. Zhang

Full Article PDF (551 KB)

A pyramidal horn monopulse array is proposed for working at Ka-band with circular polarization (CP) characteristic. The array is composed of 28 elements with a 28-way waveguide power divider network. The element has a pyramidal horn with a rectangular waveguide, which is placed downside the horn. And a 45° inclined slot cut in the wide wall of the rectangular waveguide. The inclined slot can convert the excitation into two orthogonal modes (TE10 and TE01) with equal amplitude, and 90° out of phase is produced due to different propagation constants of the two modes in the pyramidal horn. Therefore, the antenna can achieve CP by using a compact structure without polarizer. This paper also provides procedure of the compact power divider network for synthesizing monopulse pattern. This monopulse array has excellent performance: The simulated and measured reflection coefficients of the sum port and the difference port of the array are below -15 dB, the side lobe level of array less than -27 dB, and axial ratio <3 dB in the mainlobe beamwidth. The simulated and measured results are in good agreement.

Y. Ren, J. Wang, D.-C. Hu, and N. Zhang, "Horn-Based Circular Polarized Antenna Array with a Compact Feeding for Ka-Band Monopulse Antenna," Progress In Electromagnetics Research, Vol. 142, 291-308, 2013.

1. Bullock, L. G., G. R. Oeh, and J. J. Sparagna, "An analysis of wide-band microwave monopulse direction finding techniques," IEEE Transactions on Aerospace and Electronic Systems, Vol. 7, No. 1, 188-203, Jan. 1971.

2. Strauss, G. and K. Breitsameter, "A circular polarized tem horn antenna array with large scanning angle," 2011 IEEE Radio and Wireless Symposium, 98-101, Jan. 2011.

3. Gan, T. H. and E. L. Tan, "Design of waveguide fed broadband circular polarization truncated horn antenna for high power applications," 2011 Asia-Pacific Microwave Conference Proceedings, 1194-1197, Dec. 2011.

4. Du Toit, J. B., D. E. Baker, and A. J. Booysen, "Design and development of an 8 to 12 GHz circularly polarized two element horn antenna array with high isolation," 2012 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, 1005-1008, Sep. 2012.

5. Franco, M. J., "A high-performance dual-mode feed horn for parabolic reflectors with a stepped-septum polarizer in a circular waveguide," IEEE Antennas and Propagation Magazine, Vol. 53, No. 3, 142-146, Jun. 2011.

6. Chen, M. and G. Tsandoulas, "A wide-band square-waveguide array polarizer," IEEE Transactions on Antennas and Propagation, Vol. 21, No. 3, 389-391, May 1973.

7. Bornemann, J. and S. Amari, "Septum polarizer design for antenna feeds produced by casting," IEEE International Symposium on Antennas and Propagation Digest, Vol. 2, 1422-1425, Montreal, Jul. 1997.

8. Behe, R. and P. Brachat, "Compact duplexer-polarizer with semicircular waveguide," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 8, 1222-1224, Aug. 1991.

9. Hazdra, P., R. Galuscak, and M. Mazanek, "Optimization of prime-focus circular waveguide feed with septum polarization transformer for 1.296 GHz EME station," Proceedings of the First European Conference on Antennas and Propagation, Nice, Nov. 2006.

10. Leal-Sevillano, C. A., J. R. Montejo-Garai, J. M. Rebollar, and J. A. Ruiz-Cruz, "CAD for dual-band polarizers in corrugated rectangular waveguide," 2011 41st European Microwave Conference, 822-825, Oct. 10-13, 2011.

11. Yun, J., S. Jeon, and J. Chae, "Feed horn antenna including circular-polarizer and straight type mode converter to illuminate shaped reflector at Ka-band," 2004 IEEE Antennas and Propagation Society International Symposium, 1559-1562, 2004.

12. Tucholke, U., F. Arndt, and T. W. Riedt, "Field theory design of square waveguide iris polarizers," IEEE Transactions on Microwave Theory Technology, Vol. 34, No. 1, 156-160, Jan. 1986.

13. Yoneda, N., R. Miyazaki, I. Matsumura, and M. Yamato, "A design of novel grooved circular waveguide polarizers," IEEE Transactions on Microwave Theory Technology, Vol. 48, No. 12, 2446-2452, Dec. 2000.

14. Lee, C. S., S. L. Chuang, and S. W. Lee, "A simple version of corrugated guide: Smooth-walled circular waveguide coated with lossy magnetic material," Antennas Propagation Soc. Int. Symp. Dig., Vol. 1, 303-306, 1985.

15. Lee, C. S., S.-W. Lee, and D. W. Justice, "A simple circular-polarized antenna: Circular waveguide horn coated with lossy magnetic material," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 2, 297-300, Feb. 1988.

16. Pozar, D. M., Microwave Engineering, 4th Ed., John Willey & Sons, Inc., 2011.

17. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Willey & Sons, Inc., 2005.

18. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1998.

19. Miyashita, H. and T. Katagi, "Radial line planar monopulse antenna," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 8, 1158-1165, Aug. 1996.

20. Varghese, J., M. S. Easwaran, S. Christopher, and Y. M. Rao, "Computer aided design of planar waveguide monopulse comparator for low height airborne antennas," Proc. Radar. 97, Electron and Radar. Conference, 522-525, Oct. 1997.

21. Arnold, E., R. W. Lyon, A. Schlaud, K. Solbach, and J. S. Tanner, "Design of a power divider network for a slotted waveguide array using finite element and finite difference techniques," Eighth International Conference on Publication Antennas and Propagation, Vol. 2, 831-833, 1993.

© Copyright 2014 EMW Publishing. All Rights Reserved