PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 141 > pp. 553-575

A NEW PARAMETER ESTIMATION METHOD FOR GTD MODEL BASED ON MODIFIED COMPRESSED SENSING

By X. Yan, J. Hu, G. Zhao, J. Zhang, and J. Wan

Full Article PDF (302 KB)

Abstract:
The electromagnetic scattering mechanism of radar targets in the high-frequency domain can be characterized exactly by geometrical theory of diffraction (GTD) model. In this paper, we propose a novel parameter estimation method for GTD model based on compressed sensing. The sparse characteristic of radar echoes is analyzed, and the parameter estimation problem is converted to one of sparse signal reconstruction. Furthermore, clustering and linear least-minimum-squares algorithms are utilized to improve the accuracy of the result. Compared with several modern spectral estimation techniques, the proposed method gives a more precise estimation of the GTD model parameters, especially the scattering centers. Simulations with synthetic and measured data in an anechoic chamber confirm the effectiveness of the method.

Citation:
X. Yan, J. Hu, G. Zhao, J. Zhang, and J. Wan, "A New Parameter Estimation Method for GTD Model Based on Modified Compressed Sensing," Progress In Electromagnetics Research, Vol. 141, 553-575, 2013.
doi:10.2528/PIER13052017
http://www.jpier.org/PIER/pier.php?paper=13052017

References:
1. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Soc. Amer., Vol. 52, No. 2, 116-130, Jan. 1962.
doi:10.1364/JOSA.52.000116

3. Tseng, N. and W. D. Burnside, "A very efficient RCS data compression and reconstruction technique,", Tech. Rep. No. 722780-4, ElectroSci. Lab, Ohio State University, Columbus, 1992.

3. Wang, Y. and H. Ling, "A model-based angular extrapolation technique for iterative method-of-moments solvers," Microwave and Optical Technology Letters, Vol. 20, No. 4, 229-233, Feb. 1999.
doi:10.1002/(SICI)1098-2760(19990220)20:4<229::AID-MOP3>3.0.CO;2-L

4. Gupta, I. J., M. J. Beals, and A. Moghaddar, "Data extrapolation for high resolution radar imaging," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 11, 1540-1545, Nov. 1994.
doi:10.1109/8.362783

5. Zhang, X., J. Qin, and G. Li, "SAR target classification using Bayesian compressive sensing with scattering centers features," Progress In Electromagnetics Research, Vol. 136, 385-407, 2013.

6. Kim, K.-T. and H.-T. Kim, "One-dimensional scattering centre extraction for efficient radar target classification," IEE Proc. - Radar, Sonar and Navigation, Vol. 146, No. 3, 147-158, Jun. 1999.
doi:10.1049/ip-rsn:19990321

7. Sdeedly, W. M. and R. L. Moses, "High resolution exponential modeling of fully polarized radar returns," IEEE Transactions on Aerospace and Electronic Systems, Vol. 27, No. 3, 459-469, May 1991.
doi:10.1109/7.81427

8. McClure, M., R. C. Qiu, and L. Carin, "On the superresolution identification of observables from swept-frequency scattering data," IEEE Transactions on Antennas Propagations, Vol. 45, No. 4, 631-641, Apr. 1997.
doi:10.1109/8.564089

9. Potter, L. C., D.-M. Chiang, R. Carriere, and M. J. Gerry, "A GTD-based parametric model for radar scattering," IEEE Transactions on Antennas and Propagations, Vol. 43, No. 10, 1058-1067, Oct. 1995.
doi:10.1109/8.467641

10. Bo, H. Y., "Estimating two-dimensional frequencies by matrix enhancement and matrix pencil," IEEE Transactions on Signal Processing, Vol. 40, No. 9, 2267-2280, Sep. 1992.
doi:10.1109/78.157226

11. Chen, F. J. and C. Carrson, "Estimation of two-dimensional frequencies using modified matrix pencil method," IEEE Transactions on Signal Processing, Vol. 55, No. 2, 718-724, Jan. 2007.
doi:10.1109/TSP.2006.885813

12. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas Propagations, Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830

13. Jiang, J., F. Duan, and J. Chen, "Three-dimensional localization algorithm for mixed near-field and far-field sources based on ESPRIT and MUSIC method," Progress In Electromagnetics Research, Vol. 136, 435-456, 2013.

14. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, No. 7, 984-995, Jul. 1989.
doi:10.1109/29.32276

15. Stoica, P. and Y. Selen, "Model-order selection: A review of information criterion rules," IEEE Signal Processing Magazine, Vol. 21, No. 4, 36-47, Jul. 2004.
doi:10.1109/MSP.2004.1311138

16. Donoho, D., "Compress sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, Apr. 2006.
doi:10.1109/TIT.2006.871582

17. Candes, E., J. Romberg, and T. Tao, "Robust uncertainty principle: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, No. 2, 489-509, Feb. 2006.
doi:10.1109/TIT.2005.862083

18. Liu, Z., X. Z. Wei, and X. Li, "Adaptive clutter suppression for airborne random pulse repetition interval radar based on compressed sensing," Progress In Electromagnetics Research, Vol. 128, 291-311, 2012.

19. Herman, M. and T. Strohmer, "High-resolution radar via compressive sensing," IEEE Transactions on Signal Processing, Vol. 57, No. 6, 2275-2284, Jun. 2009.
doi:10.1109/TSP.2009.2014277

20. Gurbuz, A. C., J. H. McClellan, and W. R. Scott, "A compressive sensing data acquisition and imaging method for stepped frequency GPRs," IEEE Transactions on Signal Processing, Vol. 57, No. 7, 2640-2650, Jul. 2009.
doi:10.1109/TSP.2009.2016270

21. Huang, Q., L. Qu, B. Wu, and G. Fang, "UWB through-wall imaging based on compressive sensing," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 3, 1408-1415, Mar. 2010.
doi:10.1109/TGRS.2009.2030321

22. Li, J., S. S. Zhang, and J. F. Chang, "Applications of compressed sensing for multiple transmitters multiple azimuth beams SAR imaging," Progress In Electromagnetics Research, Vol. 127, 259-275, 2012.
doi:10.2528/PIER12021307

23. Wei, S.-J., X.-L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

24. Zhang, L., et al., "Achieving higher resolution ISAR imaging with limited pulses via compressed sampling," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 3, 567-571, Jun. 2009.
doi:10.1109/LGRS.2009.2021584

25. Baraniuk, R. G., "A lecture on compressive sensing," IEEE Signal Processing Magazine, Vol. 24, No. 4, 118-121, Jul. 2007.
doi:10.1109/MSP.2007.4286571

26. Mallat, S. and Z. Zhang, "Matching pursuit with time-frequency dictionaries," IEEE Transactions on Signal Processing, Vol. 41, No. 12, 3397-3415, Dec. 1993.
doi:10.1109/78.258082

27. Dai, W. and O. Milenkovic, "Subspace pursuit for compressive sensing signal reconstruction," IEEE Trans. Inf. Theory, Vol. 55, No. 5, 2230-2249, May 2009.
doi:10.1109/TIT.2009.2016006

28. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, Vol. 53, No. 12, 4655-4666, Dec. 2007.
doi:10.1109/TIT.2007.909108

29. M. Grant, M. and S. Boyd, " Grant," , CVX: Matlab Software for Disciplined Convex Programming (Web Pag-e and Software), 2011, Available: http://stanford.edu/ boyd/cvx.
doi:10.1109/TGRS.2010.2048575

30. Zhang, L., et al., "Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 10, 3824-3838, Oct. 2010.

31. Wang, M. and W. Xu, "On the performance of sparse recovery via lp-minimization (0 ≤ p ≤1)," IEEE Trans. Inf. Theory, Vol. 57, No. 10, 7255-7278, Oct. 2011.
doi:10.1109/TIT.2005.858979

32. Candes, E. J. and T. Tao, "Decoding by linear programming," IEEE. Trans. Inf. Theory, Vol. 51, No. 12, 4203-4215, Dec. 2005.
doi:10.1109/LGRS.2012.2188093

33. Browne, K. E. and R. J. Burkholder, "Non-linear optimization of through-wall radar images via the lagrange multiplier method," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 5, 803-807, Sep. 2012.

34. Burkholder, R. J., A. N. O'Donnell, W. O. Coburn, and C. J. Reddy, "Sparse basis expansion for compressive sensing of electromagnetic scattering patterns computed using iterative physical optics," 2012 International Conference on Electromagnet ics in Advanced Applications (ICEAA 2012), Cape Town, South Africa, Sep. 2-7, 2012.


© Copyright 2014 EMW Publishing. All Rights Reserved