PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 141 > pp. 497-516

AZIMUTH MULTICHANNEL SAR IMAGING BASED ON COMPRESSED SENSING

By M. Wang, W. Yu, and R. Wang

Full Article PDF (375 KB)

Abstract:
Azimuth multichannel is a promising technique of realizing high resolution and wide swath for synthetic aperture radar (SAR) imaging, which consequently leads to extremely high data rate on satellite downlink system and confronts serious ambiguity in subsequent processing due to its strict limitation of pulse repetition frequency (PRF). Ambiguity suppression performance of conventional spectrum construction is disappointing when the samples are approximately overlapped. To overcome these weaknesses, a novel sparse sampling scheme for displaced phase center antennas based on compressed sensing (CS) is proposed in this paper. The imaging strategy sparsely sampled in both range and azimuth direction, leading to a significant reduction of the system data amount beyond the Nyquist theorem, and then operated the CS technique in two dimensions to accomplish target reconstruction. Effectiveness of the proposed approach was validated through simulation and real data experiment. Simulation results and analysis indicated that the new imaging strategy could provide several favorable capability than conventional imaging algorithm such as less sampled data, better ambiguity suppression, higher resolution, and lower integrated side-lobe ratio (ISLR).

Citation:
M. Wang, W. Yu, and R. Wang, "Azimuth Multichannel SAR Imaging Based on Compressed Sensing," Progress In Electromagnetics Research, Vol. 141, 497-516, 2013.
doi:10.2528/PIER13052205
http://www.jpier.org/PIER/pier.php?paper=13052205

References:
1. Xu, W., P. P. Huang, and Y. K. Deng, "Multi-channel SPCMB-TOPS SAR for high resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.

2. Gebert, N., G. Krieger, and A. Moreira, "Multichannel azimuth processing in ScanSAR and TOPS mode operation," IEEE Trans. Geosci. Remote Sensing, Vol. 48, No. 7, 2994-3008, 2010.
doi:10.1109/TGRS.2010.2041356

3. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Publishing House of Electronics Industry, 2007.

4. Huang, P., W. Xu, and W. Qi, "Two dimension digital beamforming preprocessing in multibeam scan SAR," Progress In Electromagnetics Research, Vol. 136, 495-508, 2013.

5. Carrara, W., R. Goodman, and R. Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Algorithm, Artech House, Boston, 1995.

6. Guo, D. M., H. P. Xu, and J. W. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.

7. Gebert, N., Multi-channel Azimuth Processing for High-resolution Wide-swath SAR Imaging, DLR, Bibliotheks und Informationswesen, 2009.

8. Jenq, Y.-C., "Perfect reconstruction of digital spectrum from nonuniformly sampled signals," IEEE Transactions on Instrumentation and Measurement, Vol. 46, No. 3, 649-652, 1997.
doi:10.1109/19.585419

9. Donoho, D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

10. Candes, E., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083

11. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," Proc. IEEE Radar Conf., 128-133, Waltham, MA, Apr. 2007.

12. Wei, S. J., X. L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

13. Zhang, X., J. Qin, and G. Li, "SAR target classification using Bayesian compressive sensing with scattering centers features," Progress In Electromagnetics Research, Vol. 136, 385-407, 2013.

14. Chen, J., J. H. Gao, Y. Q. Zhu, W. Yang, and P. B. Wang, "A novel image formation algorithm for high-resolution wide-swath spaceborne SAR using compressed sensing on azimuth displacement phase center antenna," Progress In Electromagnetics Research, Vol. 125, 527-542, 2012.
doi:10.2528/PIER11121101

15. Zhang, L., et al., "Achieving higher resolution ISAR imaging with limited pulses via compressed sensing in sparse aperture imaging of radar," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 3, 567-571, 2009.
doi:10.1109/LGRS.2009.2021584

16. Alonso, M. T., P. Lopez-Dekker, and J. J. Mallorqui, "A novel strategy for radar imaging based on compressive sensing," IEEE Geosci. Remote Sens. Lett., Vol. 42, No. 18, 4285-4295, 2010.

17. Baraniuk, R., "Compressive sensing," IEEE Signal Process., Vol. 24, No. 4, 118-121, 2007.
doi:10.1109/MSP.2007.4286571

18. Candes, E., "Compressive sampling," Proc. Int. Congr. Math., Vol. 3, 1433-1452, 2006.

19. Candes, J., "The restricted isometry property and its implications for compressed sensing," Comptes Rendus Mathematique, Vol. 346, No. 9, 589-592, Paris, 2008.
doi:10.1016/j.crma.2008.03.014

20. Candes, E., J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Commun. Pure Appl. Math., Vol. 59, No. 8, 1207-1223, 2006.
doi:10.1002/cpa.20124

21. Chen, S., D. Donoho, and M. Saunders, "Atomic decomposition by basis pursuit," SIAM Rev., Vol. 43, No. 1, 129-159, 1998.
doi:10.1137/S003614450037906X

22. Eldar, Y. C. and G. Kutyniok, Compressed Sensing: Theory and Applications, Cambridge University Press, 2012.

23. Davis, G., S. Mallat, and M. Avellaneda, "Adaptive greedy approximations," Constr. Approx., Vol. 13, No. 1, 57-98, 1997.

24. Tropp, J. and A. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108

25. Blumensath, T. and M. Davies, "Iterative hard thresholding for comressive sensing," Appl. Comput. Harmon. Anal., Vol. 27, No. 3, 265-274, 2009.
doi:10.1016/j.acha.2009.04.002

26. Brusch, S., S. Lehner, T. Fritz, M. Soccorsi, A. Soloviev, and B. van Schie, "Ship surveillance with TerraSAR-X," IEEE Trans. Geosci. Remote Sensing, Vol. 49, No. 3, 1092-1103, 2011.
doi:10.1109/TGRS.2010.2071879

27. Kim, J.-H., M. Younis, P. Prats-Iraola, M. Gabele, and G. Krieger, "First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression," IEEE Trans. Geosci. Remote Sensing, Vol. 51, No. 1, 579-590, 2013.
doi:10.1109/TGRS.2012.2201947

28. Krieger, G., N. Gebert, and A. Moreira, "Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling," IEEE Geosci. Remote Sens. Lett., Vol. 1, No. 4, 260-264, 2004.
doi:10.1109/LGRS.2004.832700

28. Brule, L. and H. Baeggli, "Radarsat-2 program update," Proc. IGARSS, Vol. 2, 1186-1189, 2002.


© Copyright 2014 EMW Publishing. All Rights Reserved