PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 142 > pp. 353-368

A DISPERSIVE CONFORMAL FDTD TECHNIQUE FOR ACCURATE MODELING ELECTROMAGNETIC SCATTERING OF THZ WAVES BY INHOMOGENEOUS PLASMA CYLINDER ARRAY

By X. Ai, Y. Tian, Z. Cui, Y. Han, and X.-W. Shi

Full Article PDF (610 KB)

Abstract:
A dispersive conformal FDTD method has been proposed to accurately model the interface between two adjacent dispersive mediums and implemented to study the scattering of THz electromagnetic (EM) waves by inhomogeneous collisional plasma cylinder array. The method is based on the technology of area average, which is different from existing dispersive conformal FDTD schemes. Numerical results show that the proposed method enhance the accuracy level compared to the staircasing FDTD scheme involved in the inhomogeneous plasma. It is interesting to find that the THz EM waves can propagate through the plasma array more easily with higher frequencies or larger separations, hence the scattering width in the backward direction becomes smaller, and the forward scattering exhibits a little difference. This study will be useful for further designing intelligent plasma antenna arrays in THz band and terahertz reentry telemetry through plasma.

Citation:
X. Ai, Y. Tian, Z. Cui, Y. Han, and X.-W. Shi, "A Dispersive Conformal FDTD Technique for Accurate Modeling Electromagnetic Scattering of THz Waves by Inhomogeneous Plasma Cylinder Array," Progress In Electromagnetics Research, Vol. 142, 353-368, 2013.
doi:10.2528/PIER13052409
http://www.jpier.org/PIER/pier.php?paper=13052409

References:
1. Casey, K., "Radiation through an inhomogeneous reentry plasma layer," IEEE Transactions on Antennas and Propagation,, Vol. 19, No. 5, 711-712, 1971.
doi:10.1109/TAP.1971.1140022

2. Stewart, G., "Laboratory simulation of reentry plasma sheaths," IEEE Transactions on Antennas and Propagation, Vol. 15, No. 6, 831-832, 1967.
doi:10.1109/TAP.1967.1139033

3. Shi, L., B. Guo, Y. Liu, and J. Li, "Characteristic of plasma sheath channel and its effect on communication," Progress In Electromagnetics Research, Vol. 123, 321-336, 2012.
doi:10.2528/PIER11110201

4. Rayner, J. P., A. P. Whichello, and A. D. Cheetham, "Physical characteristics of plasma antennas," IEEE Transactions on Plasma Science, Vol. 32, No. 1, 269-281, 2004.
doi:10.1109/TPS.2004.826019

5. Alexeff, I., T. Anderson, S. Parameswaran, E. P. Pradeep, J. Hulloli, and P. Hulloli, "Experimental and theoretical results with plasma antennas," IEEE Transactions on Plasma Science, Vol. 34, No. 2, 166-172, 2006.
doi:10.1109/TPS.2006.872180

6. Alexeff, I., T. Anderson, and E. Farshi, "Recent results for plasma antennas," Physics of Plasmas, Vol. 15, 057104-4, 2008.

7. Kuz'min, G., I. Minaev, K. Rukhadze, V. Tarakanov, and O. Tikhonevich, "Reflector plasma array antennas," Journal of Communications Technology and Electronics, Vol. 57, No. 5, 536-542, 2012.
doi:10.1134/S1064226912040110

8. Wu, X. P., J.-M. Shi, Z. S. Chen, and B. Xu, "A new plasma antenna of beam-forming," Progress In Electromagnetics Research, Vol. 126, 539-553, 2012.
doi:10.2528/PIER12021906

9. Kohler, R., A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature, Vol. 417, 156-159, 2002.
doi:10.1038/417156a

10. Bartel, T., P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, "Generation of single-cycle THz transients with high electric-field amplitudes," Optics Letters, Vol. 30, No. 20, 2805-2807, 2005.
doi:10.1364/OL.30.002805

11. Yang, L., B. Rosam, and M. M. Dignam, "Density-dependent terahertz emission in biased semiconductor superlattices: From Bloch oscillations to plasma oscillations," Physical Review B, Vol. 72, 115313, 2005.
doi:10.1103/PhysRevB.72.115313

12. Liu, J. and X. C. Zhang, "Terahertz-radiation-enhanced emission of °uorescence from gas plasma," Physical Review Letters, Vol. 103, No. 23, 235002, Dec. 4, 2009.
doi:10.1103/PhysRevLett.103.235002

13. Jamison, S. P., J. Shen, D. R. Jones, R. C. Issac, B. Ersfeld, D. Clark, and D. A. Jaroszynski, "Plasma characterization with Terahertz time-domain measurements," Journal of Applied Physics, Vol. 93, No. 7, 4334-4336, 2003.
doi:10.1063/1.1560564

14. Yuan, C., Z. Zhou, X. Xiang, H. Sun, and S. Pu, "Propagation of broadband terahertz pulses through a dense-magnetized-collisional-bounded plasma layer," Physics of Plasmas, Vol. 17, 113304-113307, 2010.
doi:10.1063/1.3515895

15. Yuan, C., Z. Zhou, J. W. Zhang, X. Xiang, Y. Feng, and H. Sun, "FDTD analysis of terahertz wave propagation in a high-temperature unmagnetized plasma slab," IEEE Transactions on Plasma Science, Vol. 39, No. 7, 1577-1584, 2011.
doi:10.1109/TPS.2011.2151207

16. Kim, J. J., D. G. Jang, M. S. Hur, H. Jang, and H. Suk, "Relativistic terahertz pulse generation by non-linear interaction of a high-power fs laser with underdense plasmas," Journal of Physics D: Applied Physics, Vol. 45, 395201-395205, 2012.
doi:10.1088/0022-3727/45/39/395201

17. Oh, T. I., Y. S. You, and K. Y. Kim, "Two-dimensional plasma current and optimized terahertz generation in two-color photoionization," Optics Express, Vol. 20, No. 18, 19778-19786, 2012.
doi:10.1364/OE.20.019778

18. Taflove, A., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 2000..

19. Wahl, P., D. S. Ly Gagnon, C. Debaes, J. Van Erps, N. Vermeulen, D. A. Miller, and H. Thienpont, "B-calm: An open-source multi-GPU-based 3D-FDTD with multi-pole dispersion for plasmonics," Progress In Electromagnetics Research, Vol. 138, 467-478, 2013.

20. Markovich, D. L., K. S. Ladutenko, and P. A. Belov, "Performance of FDTD method CPU implementations for simulation of eletromagnetic processes," Progress In Electromagnetics Research, Vol. 139, 655-670, 2013.

21. Luebbers, R., F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, No. 3, 222-227, 1990.
doi:10.1109/15.57116

22. Sullivan, D. M., "Frequency-dependent FDTD methods using Z transforms," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 10, 1223-1230, 1992.
doi:10.1109/8.182455

23. Gandhi, O. P., B. Q. Gao, and J. Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 4, 658-665, 1993.
doi:10.1109/22.231661

24. Hulse, C. and A. Knoesen, "Dispersive models for the finite-difference time-domain method: Design, analysis, and implementation," implementation (Optics and Image Science), Vol. 11, No. 6, 1802-1811, 1994.

25. Chun, K., H. Kim, H. Kim, and Y. Chung, "PLRC and ADE implementations of drude-critical point dispersive model for the FDTD method," Progress In Electromagnetics Research, Vol. 135, 373-390, 2013.

26. Kaneda, N., B. Houshmand, and T. Itoh, "FDTD analysis of dielectric resonators with curved surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 9, 1645-1649, 1997.
doi:10.1109/22.622937

27. Supriyo, D. and R. Mittra, "A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 9, 1737-1739, 1999.
doi:10.1109/22.788616

28. Yu, W. H. and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 1, 25-2, Jan. 2001.
doi:10.1109/7260.905957

29. Wang, J., W. Yin, P. Liu, and Q. Liu, "High-order interface treatment techniques for modeling curved dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 2946-2953, 2010.
doi:10.1109/TAP.2010.2052562

30. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702

31. Mohammadi, A., H. Nadgaran, and M. Agio, "Contour-path effective permittivities for the two-dimensional finite-difference time-domain method," Optics Express, Vol. 13, No. 25, 10367-10381, 2005.
doi:10.1364/OPEX.13.010367

32. Mohammadi, A. and M. Agio, "Dispersive contour-path finite-difference time-domain algorithm for modelling surface plasmon polaritons at flat interfaces," Optics Express, Vol. 14, No. 23, 11330-11338, 2006.
doi:10.1364/OE.14.011330

33. Mohammadi, A., T. Jalali, and M. Agio, "Dispersive contour-path algorithm for the two-dimensional finite-difference time-domain method," Optics Express, Vol. 16, No. 10, 7397-7406, 2008.
doi:10.1364/OE.16.007397


© Copyright 2014 EMW Publishing. All Rights Reserved