Vol. 141
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-08-05
Ultra Wide Band Response of an Electromagnetic Wave Shield Based on a Diode Grid
By
Progress In Electromagnetics Research, Vol. 141, 591-605, 2013
Abstract
This paper investigates Ultra Wide Band (UWB) response of a self-actuated electromagnetic wave shield based on a diode grid both in frequency and time domain. The investigation is first carried out on a shield valid for an incident wave polarized at a specific direction only, then extended to a shield effective for an incident wave polarized at an arbitrary direction. In the frequency domain, two linear analysis methods are used to study the properties of the diode grid over the frequency range from 0.01 to 10 GHz. One method is the microwave network analysis. Another is simulating the diode grid by a linear equivalent circuit instead of a diode. In the time domain, the property of the shield is studied with respect to a broadband impulse, where the diode is described by its SPICE circuit model including the nonlinear property. The results show that the diode grid works well as a self-actuated electromagnetic power selective surface (PSS) in a certain frequency range. The diode grid is strongly frequency dependent. The operating frequency band relies on the reactive elements in the diode grid. In order to extend the operating frequency to a high band, smaller cell size and smaller junction capacitance should be employed.
Citation
Yangjun Zhang, Mengqing Yuan, and Qing Huo Liu, "Ultra Wide Band Response of an Electromagnetic Wave Shield Based on a Diode Grid," Progress In Electromagnetics Research, Vol. 141, 591-605, 2013.
doi:10.2528/PIER13053004
References

1. Ulrich, R., "Far-infrared properties of metallic mesh and its complementary structure," Infrared Physics, Vol. 7, 37-55, 1967.
doi:10.1016/0020-0891(67)90028-0

2. Christodoulou, C. and J. Kauffman, "On the electromagnetic scattering from infinite rectangular grids with finite conductivity," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 2, 144-154, 1986.
doi:10.1109/TAP.1986.1143803

3. Kikel, A., L. Altgibers, and I. Merritt, "Plasma limiters,", AIAA Paper, AIAA-98-2564, 1998.

4. Mankowski, J. J., D. Hemmert, A. Neuber, and H. Krompholz, "Field enhanced microwave breakdown in a plasma limiter," IEEE Trans. Plasma Sci., Vol. 30, No. 1, 102-103, 2002.
doi:10.1109/TPS.2002.1003944

5. Yang, G., J. C. Tan, D. Y. Sheng, and Y. C. Yang, "Plasma limiter for protecting against high power microwave," J. Sci. Ind. Res., Vol. 67, 685-687, 2008.

6. Altgilbers, L., S. Balevicius, O. Kiprijanovic, V. Pyragas, E. E. Tornau, A. Jukna, B. Vengalis, and F. Anisimovas, "Fast protector against EMP using electrical field induced resistance change in La Ca MnO thin films," Proc. IEEE Int. Conf. Pulsed Power Plasma Sci., Vol. 2, 1782-1785, 2001.

7. Barthelemy, A., A. Fert, J. P. Contour, M. Bowen, V. Cros, J. M. DeTeresa, A. Hamzic, J. C. Faini, J. George, J. Grollier, F. Montaigne, F. Pailloux, F. Petroff, and C. Voiulle, "Magnetoresistance and spinelectronics," J. Magn. Magn. Mater., Vol. 242-245, 68-76, 2002.
doi:10.1016/S0304-8853(01)01193-3

8. Chang, T. K., R. J. Langley, and E. Parker, "An active square loop frequency selective surface," IEEE Microwave Guided Wave Lett., Vol. 13, No. 10, 387-388, 1993.
doi:10.1109/75.242271

9. Sanz-Izquierdo, B., E. A. Parker, J. B. Robertson, and J. C. Batchelor, "Tuning technique for active FSS arrays," Electronics Letters, Vol. 45, No. 22, 1107-1109, 2009.
doi:10.1049/el.2009.2264

10. Kiani, G. I., K. L. Ford, L. G. Olsson, K. P. Esselle, and C. J. Panagamuwa, "Switchable frequency selective surface for reconfigurable electromagnetic architecture of buildings," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 581-584, 2010.
doi:10.1109/TAP.2009.2037772

11. Monni, S., D. J. Bekers, M. van Wanum, R. van Dijk, A. Neto, G. Gerini, and F. E. van Vliet, "Limiting frequency selective surfaces," Proc. 2009 European Microwave Conference (EuMC), 606-609, 2009.

12. Yang, C., P. G. Liu, and X. J. Huang, "A novel method of energy selective surface for adaptive HPM/EMP protection," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 112-115, 2013.
doi:10.1109/LAWP.2013.2243105

13. , , , http://www.wavenology.com/.

14. Pozar, D. M., Microwave Engineering, 3rd Edition, John Wiley & Sons, Inc., 2009.

15. , , , HMPS-282x series Datasheet, http://www.avagotech.com/.

16. , , , DMK2308 series Datasheet, http://www. skyworksinc.com.