Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 141 > pp. 431-441


By Y. Hou, J. Xu, S. Wang, Z.-G. Lu, Y.-Y. Wei, and Y.-B. Gong

Full Article PDF (438 KB)

A novel double-ridge loaded folded waveguide (FWG) traveling-wave tube (TWT) amplifier for sheet electron beam working at 140 GHz is proposed in this paper. The dispersion relation and interaction impedance characteristics have been analyzed based on the equivalent circuit method. The transmission properties and nonlinear interaction are investigated. The simulation results reveal that the double-ridge loaded FWG-TWT with sheet electron beam can make full use of relatively large electronic fields, and the average output power can be over 110 W at 140 GHz when the electron beam voltage and the current of the sheet beam are set to 12.7 kV and 150 mA, respectively. Meanwhile, the maximum gain and interaction efficiency can reach 34 dB and 12%, respectively. Compared with the traditional FWG-TWT, the novel FWG-TWT has the advantages of much higher efficiency and bigger output power.

Y. Hou, J. Xu, S. Wang, Z.-G. Lu, Y.-Y. Wei, and Y.-B. Gong, "Study of High Efficiency Novel Folded Waveguide Traveling-Wave Tube with Sheet Electron Beam," Progress In Electromagnetics Research, Vol. 141, 431-441, 2013.

1. Dohler, G., D. Gagne, D. Gallagher, and R. Moats, "Serpentine wave-guide TWT," 1987 International Electron Devices Meeting, Vol. 33, 1987.

2. Na, Y. H., S. W. Chung, and J. J. Choi, "Analysis of a broadband Q band folded waveguide traveling-wave tube," IEEE Trans. on Plasma Sci., Vol. 30, No. 3, 1017-1023, Jun. 2002.

3. Gallagher, D., J. Richards, and C. Armstrong, "Millimeter-wave folded waveguide TWT development at Northrop Grumman," IEEE International Conference on Plasma Science, Vol. 161, 1997.

4. Gallagher, D., et al., "Optimized design of folded waveguide TWTs," Proc. Int. Vac. Electron. Conf., Vol. 46, 2002.

5. Booske, J. H., "New opportunities in vacuum electronics through the application of microfabrication technologies," Proc. Int. Vac. Electron. Conf., 11-12, Apr. 2002.

6. Alan, J. T., C. J. Meadows, and R. B. True, "Experimental investigation of a novel circuit for millimeter-wave TWTs," IEEE Trans. on Electron Devices, Vol. 54, No. 5, 1054-1060, 2007.

7. Bhattacharjee, S., J. H. Booske, C. L. Kory, D. W. van der Weide, S. Limbach, S. Gallagher, J. D. Welter, M. R. Lopez, R. M. Gilgenbach, R. L. Ives, M. E. Read, R. Divan, and D. C. Mancini, "Folded waveguidetraveling-wave tube sources for terahertz radiation," IEEE Trans. on Plasma Sci., Vol. 32, No. 3, 1002-1014, Jun. 2004.

8. Booske, J. H., M. C. Converse, C. L. Kory, C. T. Chevalier, D. A. Gallagher, K. E. Kreischer, V. O. Heinen, and S. Bhattacharjee, "Accurate parametric modeling of folded waveguide circuits for millimeter-wave traveling wave tubes," IEEE Trans. on Electron Devices, Vol. 52, No. 5, 685-694, May 2005.

9. Han, S. T., J. I. Kim, K. H. Jang, J. K. So, S. S. Chang, N. M. Ryskin, and G. S. Park, "Experimental investigation of millimeter wave folded-waveguide TWT," Proc. Int. Vac. Electron. Conf., 322-323, May 2003.

10. Kory, C., J. David, H. T. Tran, L. Ives, and D. Chernin, "Folded waveguide circuit optimizations using Christine 1D," Proc. 32nd IEEE Int. Conf, Plasma Sci., Vol. 333, Jun. 2005.

11. Han, S. T., J. I. Kim, and G. S. Park, "Design of a folded waveguide traveling-wave tube," Microw. Opt. Technol. Lett., Vol. 38, No. 2, 161-165, Jul. 2003.

12. Hou, Y., et al., "A novel ridge-vane loaded folded waveguide slow-wave structure for 0.22 THz traveling-wave tube," IEEE Trans. on Electron Devices, Vol. 60, No. 3, 1228-1235, May 2013.

13. He, J., et al., "Investigation of a ridge-loaded folded waveguide slow-wave system for the millimeter wave traveling wave tube," IEEE Trans. on Plasma Sci., Vol. 38, No. 7, 1556-1562, 2010.

14. Liu, Y., J. Xu, Y.-Y. Wei, X. Xu, F. Shen, M. Huang, T. Tang, W.-X. Wang, Y.-B. Gong, and J. Feng, "Design of a V-band high-power sheet-beam coupled-cavity traveling-wave tube," Progress In Electromagnetics Research, Vol. 123, 31-45, 2012.

15. Duan, Z., Y. Wang, X. Mao, W.-X. Wang, and M. Chen, "Experimental demonstration of double-negative metamaterials partially filled in a circular waveguide," Progress In Electromagnetics Research, Vol. 121, 215-224, 2011.

16. Shin, Y. M., L. R. Barnett, A. Baig, N. C. Luhmann, Jr., J. Pasour, and P. Larsen, "Modeling investigation of an ultrawideband terahertz sheet beam traveling-wave tube amplifier circuit," IEEE Trans. on Electron Devices, Vol. 58, No. 9, 3213-3218, Sep. 2011.

17. CST Corp., , , CST PS Tutorials, [Online], available: http://www. cst-china.cn/CST2009.

18. Hou, Y., J. Xu, H.-R. Yin, Y.-Y. Wei, L.-N. Yue, G. Zhao, and Y.-B. Gong, "Equivalent circuit analysis of ridge-loaded folded-waveguide slow-wave structures for millimeter-wave traveling-wave tubes," Progress In Electromagnetics Research, Vol. 129, 215-229, 2012.

19. Liu, S., "Folded waveguide circuit for broadband MM wave TWTs," Int. J. Infrared Millim Waves, Vol. 16, 809-815, 1995.

20. Ansoft Corp., , , Ansoft HFSS User's Reference, [Online], available: http://www.ansoft.com.cn/.

21. Kory, C., et al., "Overview of W-band traveling wave tube programs," IEEE International Vacuum Electronics Conference, 2006 Held Jointly with 2006 IEEE International Vacuum Electron Sources, 447-448, 2006.

© Copyright 2014 EMW Publishing. All Rights Reserved