PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 141 > pp. 403-414

EVOLUTION OF COS-GAUSSIAN BEAMS IN A STRONGLY NONLOCAL NONLINEAR MEDIUM

By Y. Guan, L.-X. Zhong, K.-H. Chew, H. Chen, Q. Wu, and R. P. Chen

Full Article PDF (336 KB)

Abstract:
The dynamical properties of cos-Gaussian beams in strongly nonlocal nonlinear (SNN) media are theoretically investigated. Based on the moments method, the analytical expression for the root-mean-square (RMS) of the cos-Gaussian beam propagating in a SNN medium is derived. The critical powers that keep the RMS beam widths invariant during propagation in a SNN medium are discussed. The RMS beam width tends to evolve periodically when the initial power does not equal to the critical power. The analytical solution of the cos-Gaussian beams in SNN media is obtained by the technique of variable transformation. Despite the difference in beam profile symmetries and initial powers, a cos-Gaussian beam always transforms periodically into a cosh-Gaussian beam during propagation, and the transformation between the two beams revives after a propagation distance.

Citation:
Y. Guan, L.-X. Zhong, K.-H. Chew, H. Chen, Q. Wu, and R. P. Chen, "Evolution of Cos-Gaussian Beams in a Strongly Nonlocal Nonlinear Medium," Progress In Electromagnetics Research, Vol. 141, 403-414, 2013.
doi:10.2528/PIER13060703
http://www.jpier.org/PIER/pier.php?paper=13060703

References:
1. Bang, O., W. Krolikowski, J. Wyller, and J. J. Rasmussen, "Collapse arrest and soliton stabilization in nonlocal nonlinear media," Phys. Rev. E, Vol. 66, 046619, 2002.
doi:10.1103/PhysRevE.66.046619

2. Yakimenko, A. I., V. M. Lashkin, and O. O. Prikhodko, "Dynamics of two-dimensional coherent structures in nonlocal nonlinear media," Phys. Rev. E, Vol. 73, 066605, 2006.
doi:10.1103/PhysRevE.73.066605

3. Buccoliero, D., A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, "Spiraling multivortex solitons in nonlocal nonlinear media," Opt. Lett., Vol. 33, No. 2, 198-200, 2008.
doi:10.1364/OL.33.000198

4. Snyder, A. W. and D. J. Mitchell, "Accessible solitons," Science, Vol. 276, No. 5318, 1538-1541, 1997.
doi:10.1126/science.276.5318.1538

5. Buccoliero, D., A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, "Laguerre and hermite soliton clusters in nonlocal nonlinear media," Phys. Rev. Lett., Vol. 98, No. 5, 053901, 2007.
doi:10.1103/PhysRevLett.98.053901

6. Lopez-Aguayo, S., A. S. Desyatnikov, and Y. S. Kivshar, "Azimuthons in nonlocal nonlinear media," Opt. Express, Vol. 14, No. 17, 7903, 2006.
doi:10.1364/OE.14.007903

7. Krolikowski, W. and O. Bang, "Solitons in nonlocal nonlinear media: Exact solutions," Phys. Rev. E, Vol. 63, No. 1, 016610, 2000.
doi:10.1103/PhysRevE.63.016610

8. Lopez-Aguayo, S. and J. C. Gutierrez-Vega, "Elliptically modulated self-trapped singular beams in nonlocal nonlinear media: ellipticons," Opt. Express, Vol. 15, No. 26, 18326-18338, 2007.
doi:10.1364/OE.15.018326

9. Biswas, A., "Temporal-soliton solution of the complex Ginzburg-Landau equation with power law nonlinearity," Progress In Electromagnetics Research, Vol. 96, 1-7, 2009.
doi:10.2528/PIER09073108

10. Mitatha, S., "Dark soliton behaviors within the nonlinear micro and nanoring resonators and applications," Progress In Electromagnetics Research, Vol. 99, 383-404, 2009.
doi:10.2528/PIER09083006

11. Chen, R. P. and C. H. R. Ooi, "Evolution and collapse of a Lorentz beam in Kerr medium," Progress In Electromagnetics Research, Vol. 121, 39-52, 2011.
doi:10.2528/PIER11081712

12. Gharakhili, F. G., M. Shahabadi, and M. Hakkak, "Bright and dark soliton generation in a left-handed nonlinear transmission line with series nonlinear capacitors," Progress In Electromagnetics Research, Vol. 96, 237-249, 2009.
doi:10.2528/PIER09080106

13. Khalique, C. M. and A. Biswas, "Optical solitons with parabolic and dual-power nonlinearity via lie symmetry analysis," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 963-973, 2009.
doi:10.1163/156939309788355270

14. Casperson, L. W. and A. A. Tovar, "Hermite-sinusoidal-Gaussian beams in complex optical systems," J. Opt. Soc. Am. A, Vol. 15, No. 4, 954-961, 1998.
doi:10.1364/JOSAA.15.000954

15. Chen, R. P., Y. Ni, and X. X. Chu, "Propagation of a cos-Gaussian beam in a Kerr medium," Opt. & Laser Tech., Vol. 43, No. 3, 483-487, 2011.
doi:10.1016/j.optlastec.2010.07.005

16. Tovar, A. A. and L. W. Casperson, "Production and propagation of Hermite-sinusoidal-Gaussian laser beams," J. Opt. Soc. Am. A, Vol. 15, No. 9, 2425-2432, 1998.
doi:10.1364/JOSAA.15.002425

17. Chen, R. P., H. P. Zheng, and X. X. Chu, "Propagation properties of a sinh-Gaussian beam in a Kerr medium," Appl. Phys. B, Vol. 102, 695-698, 2011.
doi:10.1007/s00340-010-4157-9

18. Chu, X. X., "Propagation of a cosh-Gaussian beam through an optical system in turbulent atmosphere," Opt. Express, Vol. 15, No. 26, 17613-17618, 2007.
doi:10.1364/OE.15.017613

19. Eyyuboglu, H. T. and Y. Baykal, "Reciprocity of cos-Gaussian and cosh-Gaussian laser beams in turbulent atmosphere," Opt. Express, Vol. 12, 4659-4674, 2004.
doi:10.1364/OPEX.12.004659


© Copyright 2014 EMW Publishing. All Rights Reserved