PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 141 > pp. 219-231

DUAL-BAND POLARIZATION INDEPENDENT METAMATERIAL ABSORBER BASED ON OMEGA RESOANATOR AND OCTA-STAR STRIP CONFIGURATION

By F. Dincer, M. Karaaslan, E. Unal, and C. Sabah

Full Article PDF (685 KB)

Abstract:
Dual-band metamaterial absorber (MA) with polarization independency based on omega (Ω) resonator with gap and octa-star strip (OSS) configuration is presented both numerically and experimentally. The suggested MA has a simple configuration which introduces flexibility to adjust its metamaterial (MTM) properties and easily re-scale the structure for other frequencies. In addition, the dual-band character of the absorber provides additional degree of freedom to control the absorption band(s). Two maxima in the absorption are experimentally obtained around 99% at 4.0 GHz for the first band and 79% at 5.6 GHz for the second band which are in good agreement with the numerical simulations (99% and 84%, respectively). Besides, numerical simulations validate that the MA could achieve very high absorption at wide angles of incidence for both transverse electric (TE) and transverse magnetic (TM) waves. The proposed MA and its variations enable myriad potential applications in medical technologies, sensors, modulators, wireless communication, and so on.

Citation:
F. Dincer, M. Karaaslan, E. Unal, and C. Sabah, "Dual-Band Polarization Independent Metamaterial Absorber Based on Omega Resoanator and Octa-Star Strip Configuration," Progress In Electromagnetics Research, Vol. 141, 219-231, 2013.
doi:10.2528/PIER13061105
http://www.jpier.org/PIER/pier.php?paper=13061105

References:
1. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

2. Sabah, C., H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, "Transmission tunneling through the multi-layer double-negative and double-positive slabs," Progress In Electromagnetics Research, Vol. 138, 293-306, 2013.

3. Sabah, C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral metamaterial and dielectric slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
doi:10.2528/PIER11112605

4. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-239, 2013.

5. Cheng, Y., Y. Nie, L. Wu, and R. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 421-432, 2013.

6. Boyvat, M. and C. Hafner, "Magnetic field shielding by metamaterials," Progress In Electromagnetics Research, Vol. 136, 647-664, 2013.

7. He, Y., J. Shen, and S. He, "Consistent formalism for the momentum of electromagnetic waves in lossless dispersive metamaterials and the conservation of momentum," Progress In Electromagnetics Research, Vol. 116, 81-106, 2011.

8. Hasar, U. C., J. J. Barroso, M. Ertugrul, C. Sabah, and B. Cavusoglu, "Application of a useful uncertainty analysis as a metric tool for assessing the performance of electromagnetic properties retrieval methods of bianisotropic metamaterials," Progress In Electromagnetics Research, Vol. 128, 365-380, 2012.

9. Sabah, C. and S. Uckun, "Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306

10. Sabah, C., "Multiband metamaterials based on multiple concentric open-ring resonators topology," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, 8500808, 2013.
doi:10.1109/JSTQE.2012.2193875

11. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

12. Yen, T. J., W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, 1494-1496, 2004.
doi:10.1126/science.1094025

13. Linden, S., C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100Terahertz," Science, Vol. 306, 1351-1353, 2004.
doi:10.1126/science.1105371

14. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404-4, 2005.
doi:10.1103/PhysRevLett.95.137404

15. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780nm wavelength," Opt. Lett., Vol. 32, 53-55, 2007.
doi:10.1364/OL.32.000053

16. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Physics Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

17. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

18. Smith, D. R. and N. Kroll, "Negative refraction index in left-handed materials," Phys. Rev. Lett., Vol. 85, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933

19. Bilotti, F., L. Nucci, and L. Vegni, "An SRR-based microwave absorber," Microwave and Optical Technology Letters, Vol. 48, 2171-2175, 2006.
doi:10.1002/mop.21891

20. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "A perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402-4, 2008.
doi:10.1103/PhysRevLett.100.207402

21. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Physical Review B, Vol. 80, 033108-4, 2009.
doi:10.1103/PhysRevB.80.033108

22. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

23. Zhu, B., Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, "Polarization modulation by tunable electromagnetic metamaterial reflector/absorber," Optics Express, Vol. 18, 23196-23203, 2010.
doi:10.1364/OE.18.023196

24. Lee, J. and S. Lim, "Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance," Electronics Letters, Vol. 47, 8-9, 2011.
doi:10.1049/el.2010.2770

25. Huang, Y. J., G. J. Wen, J. Li, W. R. Zhu, P. Wang, and Y. H. Sun, "Wide-angle and polarization independent metamaterial absorber based on snowflake-shaped configuration," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 5, 552-559, 2013.
doi:10.1080/09205071.2013.756383

26. Li, M. H., H. L. Yang, and X. W. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

27. He, X. J., Y. Wang, J. M. Wang, and T. L. Gui, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.

28. Wang, B. and K. M. Huang, "Spatial microwave power combining with anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 114, 195-210, 2011.

29. Butt, H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars," Progress In Electromagnetics Research, Vol. 113, 179-194, 2011.

30. Cojocaru, E., "Electromagnetic tunneling in lossless trilayer stacks containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 113, 227-249, 2011.

31. Gric, T., L. Nickelson, and S. Asmontas, "Electrodynamical characteristic particularity of open metamaterial square and circular waveguides," Progress In Electromagnetics Research, Vol. 109, 361-379, 2010.
doi:10.2528/PIER10082505

32. Choi, J. and C. H. Seo, "High-efficiency wireless energy transmission using magnetic resonance based on negative refractive index metamaterial," Progress In Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609

33. Ourir, A., R. Abdeddaim, and J. de Rosny, "Tunable trapped mode in symmetric resonator designed for metamaterials," Progress In Electromagnetics Research, Vol. 101, 115-123, 2010.
doi:10.2528/PIER09120709

34. Yilmaz, A. and C. Sabah, "Diamond-shaped hole array in double-layer metal sheets for negative index of refraction," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 4, 413-420, 2013.
doi:10.1080/09205071.2013.748437

35. Alici, K. B. and E. Ozbay, "Theoretical study and experimental realization of a low-loss metamaterial operating at the millimeter-wave regime: Demonstrations of flat- and prism-shaped samples," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 16, 386-393, 2010.
doi:10.1109/JSTQE.2009.2032668

36. Ziolkowski, R. W., "Metamaterial-based source and scattering enhancements: From microwave to optical frequencies," Opto-Electronics Review, Vol. 14, 167-177, 2006.
doi:10.2478/s11772-006-0022-0


© Copyright 2014 EMW Publishing. All Rights Reserved