Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 141 > pp. 443-461


By P. Kim, G. Chaudhary, and Y. Jeong

Full Article PDF (451 KB)

In this paper, a novel dual-band RF-harvesting RF-DC converter with a frequency limited impedance matching network (M/N) is proposed. The proposed RF-DC converter consists of a dual-band impedance matching network, a rectifier circuit with a villard structure, a wideband harmonic suppression low-pass filter (LPF), and a termination load. The proposed dual-band M/N can match two receiving band signals and suppress the out-of-band signals effectively, so the back-scattered nonlinear frequency components from the nonlinear rectifying diodes to the antenna can be blocked. The fabricated circuit provides the maximum RF-DC conversion efficiency of 73.76% and output voltage of 7.09 V at 881 MHz and 69.05% with 6.86 V at 2.4 GHz with an individual input signal power of 22 dBm. Moreover, the conversion efficiency of 77.13% and output voltage of 7.25 V are obtained when two RF waves with input dual-band signal power of 22 dBm are fed simultaneously.

P. Kim, G. Chaudhary, and Y. Jeong, "A Dual-Band RF Energy Harvesting Using Frequency Limited Dual-Band Impedance Matching," Progress In Electromagnetics Research, Vol. 141, 443-461, 2013.

1. Marincic, A. S., "Nikola tesla and the wireless transmission of energy," IEEE Trans. Power Apparatus and Systems, Vol. 101, No. 10, 4064-4068, Oct. 1982.

2. Ali, M., G. Yang, and R. Dougal, "A new circularly polarized rectenna for wireless power transmission and data communication," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 205-208, 2005.

3. Monti, G., F. Congedo, D. De Donno, and L. Tarricone, "Monopole-based rectenna for microwave energy harvesting of UHF RFID systems," Progress In Electromagnetics Research C, Vol. 31, 109-121, 2012.

4. Huang, W., B. Zhang, X. Chen, K. Huang, and C. Liu, "Study on an S-band rectenna arrays for wireless microwave power transmission," Progress In Electromagnetics Research, Vol. 135, 747-758, 2013.

5. Park, J. Y., S. M. Han, and T. Itoh, "A rectenna design with harmonic-rejecting circular-sector antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 52-54, 2004.

6. Ren, Y. J. and K. Chang, "New 5.8-GHz circularly polarized etrodirective rectenna arrays for wireless power transmission," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 7, 2970-2976, Jul. 2006.

7. Olgum, U., C. C. Chen, and J. L. Volakis, "Investigation of rectenna array configurations for enhanced RF power harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 262-265, 2011.

8. Shinohara, N. and H. Matsumoto, "Experimental study of large rectenna array for microwave energy transmission," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 3, 261-268, Mar. 1998.

9. Chaudhary, G., P. Kim, Y. Jeong, and J. H. Yoon, "Design of high efficiency RF-DC conversion circuit using novel termination networks for RF energy harvesting system," Microwave Opt. Techno. Lett., Vol. 54, No. 10, 2330-2335, Oct. 2012.

10. Gao, Y. Y., X. X. Yang, C. Jiang, and J. Y. Zhou, "A circularly polarized rectenna with low profile for wireless power transmission," Progress In Electromagnetics Research Letters, Vol. 13, 41-49, 2010.

11. Shao, X., B. Li, N. Shahshahan, N. Goldsman, T. S. Salter, and G. M. Metze, "A planar dual-band antenna design for RF energy harvesting applications," International Semicon. Device Research Symposium, 1-2, 2011.

12. Li, B., X. Shao, N. Shahshahn, N. Goldsman, T. S. Salter, and G. M. Metze, "Antenna-coupled dual band RF energy harvester design," International Semicon. Device Research Symposium (Student Paper), 1-2, 2011.

13. Suh, Y. H. and K. Chang, "A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 7, 1784-1789, Jul. 2002.

15. Ren, Y. J., M. F. Farooqui, and K. Chang, "A compact dual-frequency rectifying antenna with high-orders harmonic-rejection," IEEE Trans. Anten. Propag., Vol. 55, No. 7, 2110-2113, Jul. 2007.

16. Pavone, D., A. Buonanno, M. D'Urso, and F. Corte, "Design considerations for radio frequency energy harvesting devices," Progress In Electromagnetics Research B, Vol. 31, 19-35, 2012.

17. Chang, S. H., W. J. Liao, K. W. Peng, and C. Y. Hsieh, "A Franklin array antenna for wireless charging applications," PIERS Online, Vol. 6, No. 4, 340-344, 2010.

18. Zhang, J. W., X. Y. Zhang, Z. L. Chen, K. Y. See, C. M. Tan, and S. S. Chen, "On-chip RF energy harvesting circuit for image sensor," IEEE 13th Int. Sympo. Integ. Circuit, 420-423, 2011.

19. Lin, P. M. and L. O. Chua, "Topological generation and analysis of voltage multiplier circuits," IEEE Trans. Circuits and Systems, Vol. 24, No. 10, 517-530, Oct. 1977.

20. Park, S., H. Choi, and Y. Jeong, "Microwave group delay time adjuster using parallel resonator," IEEE Microwave and Wireless Components Letter, Vol. 17, No. 2, 109-111, Feb. 2007.

21. Mbombolo, S. E. F. and C. W. Park, "An improved detector topology for a rectenna," IEEE Microwave Workshop Series Innovative Wireless Power Transmission, 23-26, 2011.

22. Riviere, S., F. Alicalapa, A. Douyere, and J. D. Lan Sun Luk, "A compact rectenna device at low power level," Progress In Electromagnetics Research C, Vol. 16, 137-146, 2010.

23. Pozar, D. M., Microwave Engineering, 4th Edition, 415-416, Wiley, New York, 2012.

© Copyright 2014 EMW Publishing. All Rights Reserved