PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 142 > pp. 485-503

AN IMPULSE SAMPLING APPROACH FOR EFFICIENT 3D TLM-BASED ADJOINT SENSITIVITY ANALYSIS

By O. S. Ahmed, M. H. Bakr, and X. Li

Full Article PDF (513 KB)

Abstract:
We present a memory efficient algorithm for the estimation of adjoint sensitivities with the transmission line modeling (TLM) method. Our algorithm manipulates the local scattering matrices to drastically reduce the required storage for problems with lossy dielectric discontinuities. Only one impulse per cell is stored for two dimensional simulations and three impulses per cell are stored for three dimensional simulations. The required memory storage for our impulse sampling approach is only 10% of that of the original TLM-based adjoint sensitivity analysis. The technique is illustrated through two examples including the sensitivity analysis of a dielectric resonator antenna.

Citation:
O. S. Ahmed, M. H. Bakr, and X. Li, "An Impulse Sampling Approach for Efficient 3D TLM-Based Adjoint Sensitivity Analysis," Progress In Electromagnetics Research, Vol. 142, 485-503, 2013.
doi:10.2528/PIER13062805
http://www.jpier.org/PIER/pier.php?paper=13062805

References:
1. Ghaffari-Miab, M., A. Farmahini-Farahani, R. Faraji-Dana, and C. Lucas, "An efficient hybrid swarm intelligence-gradient optimization method for complex time Green's functions of multilayer media," Progress In Electromagnetics Research, Vol. 77, 181-192, 2007.
doi:10.2528/PIER07072504

2. Chung, Y., J. Ryu, C. Cheon, I. Park, and S. Hahn, "Optimal design method for microwave device using time domain method and design sensitivity analysis --- Part I: FETD case," IEEE Trans. Magn.,, Vol. 37, 3289-3293, 2001.
doi:10.1109/20.952597

3. Chung, Y., C. Cheon, I. Park, and S. Hahn, "Optimal design method for microwave device using time domain method and design sensitivity analysis --- Part II: FDTD case," IEEE Trans. Magn., Vol. 37, 3255-3259, 2001.
doi:10.1109/20.952589

4. Radwan, A. G., M. H. Bakr, and N. K. Nikolova, "Transient adjoint sensitivities for discontinuities with gaussian material distributions," Progress In Electromagnetics Research B, Vol. 27, 1-19, 2011.
doi:10.2528/PIERL11080104

5. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "Efficient ransmission line modeling sensitivity analysis exploiting rubber cells," Progress In Electromagnetics Research B, Vol. 11, 223-243, 2009.
doi:10.2528/PIERB08111502

6. Ahmed, O. S., M. H. Bakr, and X. Li, "A memory-efficient implementation of TLM-based adjoint sensitivity analysis," IEEE Trans. Antennas Propagat., Vol. 60, 2122-2125, 2012.
doi:10.1109/TAP.2012.2186237

7. Bakr, M. H. and N. K. Nikolova, "An adjoint variable method for time-domain transmission line modeling with fixed structured grids," IEEE Trans. Microw. Theory Tech., Vol. 52, 554-559, 2004.
doi:10.1109/TMTT.2003.821908

8. Nikolova, N. K., H. W. Tam, and M. H. Bakr, "Sensitivity analysis with the FDTD method on structured grids," IEEE Trans. Microw. Theory Tech., Vol. 52, 1207-1216, 2004.
doi:10.1109/TMTT.2004.825710

9. Bakr, M. H. and N. K. Nikolova, "An adjoint variable method for frequency domain TLM problems with conducting boundaries," IEEE Microw. and Wireless Components Lett., Vol. 13, 408-410, 2003.
doi:10.1109/LMWC.2003.811665

10. Georgieva, N. K., S. Glavic, M. H. Bakr, and J. W. Bandler, "Feasible adjoint sensitivity technique for EM design optimization," IEEE Trans. Microw. Theory Tech., Vol. 50, 2751-2758, 2002.
doi:10.1109/TMTT.2002.805131

11. Webb, J. P., "Design sensitivity of frequency response in 3-D finite-element analysis of microwave devices," IEEE Trans. Magn., Vol. 38, 1109-1112, 2002.
doi:10.1109/20.996284

12. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "Theory of self-adjoint S-parameter sensitivities for lossless nonhomogeneous transmission-line modeling problems," IET Microwave Antennas Propag., Vol. 2, 211-220, 2008.
doi:10.1049/iet-map:20070125

13. Johns, P. B., "A symmetrical condensed node for the TLM method," IEEE Trans. Microw. Theory Tech., Vol. 35, 370-377, 1987.
doi:10.1109/TMTT.1987.1133658

14. Hoefer, W. J. R., "The transmission-line matrix method --- Theory and applications," IEEE Trans. Microw. Theory Tech., Vol. 33, 882-893, 1985.
doi:10.1109/TMTT.1985.1133146

15. Basl, P. A. W., M. H. Bakr, and N. K. Nikolova, "An AVM technique for 3D TLM with symmetric condensed nodes," IEEE Microw. and Wireless Components Lett., Vol. 15, 618-620, 2005.
doi:10.1109/LMWC.2005.856696

16. Trenkic, V., C. Christopoulos, and T. M. Benson, "New symmetrical super-condensed node for the TLM method," Electronics Lett., Vol. 30, 329-330, 1994.
doi:10.1049/el:19940207

17. Paul, J., C. Christopoulos, and D. W. P. Thomas, "Generalized material models in TLM --- Part I: Materials with frequency-dependent properties," IEEE Trans. Antennas Propagat., Vol. 47, 1528-1534, 1999.
doi:10.1109/8.805895

18. Mansou, R. R., "High-Q tunable dielectric resonator filters," IEEE Microw. Mag., Vol. 10, 84-98, 2009.
doi:10.1109/MMM.2009.933591

19. Cohn, S. B., "Microwave bandpass filters containing high-Q dielectric resonators," IEEE Trans. Microw. Theory Tech., Vol. 16, 218-227, 1968.
doi:10.1109/TMTT.1968.1126654

20. Saliminejad, R. and M. R. Ghafouri Fard, "A novel and accurate method for designing dielectric resonator filter," Progress In Electromagnetics Research B, Vol. 8, 293-306, 2008.
doi:10.2528/PIERB08070602

21. Ali, S., N. Nikolova, and M. H. Bakr, "Central adjoint variable method for sensitivity analysis with structured grid electromagnetic solvers," IEEE Trans. Magn., Vol. 40, 1969-1971, 2004.
doi:10.1109/TMAG.2004.830999

22. Petosa, A., N. Simons, R. Siushansian, A. Ittipiboon, and M. Cuhaci, "Design and analysis of multisegment dielectric resonator antennas," IEEE Trans. Antennas Propagat., Vol. 48, 738-742, 2000.
doi:10.1109/8.855492

23. Rezaei, P., M. Hakkak, and K. Forooraghi, "Design of wide-band dielectric resonator antenna with a two-segment structure," Progress In Electromagnetics Research, Vol. 66, 111-124, 2006.
doi:10.2528/PIER06110701

24. Al-Zoubi, A. S., A. A. Kishk, and A. W. Glisson, "Analysis and design of a rectangular dielectric resonator antenna FED by dielectric image line through narrow slots," Progress In Electromagnetics Research, Vol. 77, 379-390, 2007.
doi:10.2528/PIER07082504

25. Fayad, H. and P. Record, "Multi-feed dielectric resonator antenna with reconfigurable radiation pattern," Progress In Electromagnetics Research, Vol. 76, 341-356, 2007.
doi:10.2528/PIER07071204


© Copyright 2014 EMW Publishing. All Rights Reserved