Vol. 142
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-08-25
Reconfigurable SIW Antenna Based on RF-MEMS Switches
By
Progress In Electromagnetics Research, Vol. 142, 189-205, 2013
Abstract
In this article, a novel compact reconfigurable antenna based on substrate integrated waveguide (SIW) technology is introduced. The geometry of the proposed antennas is symmetric with respect to the horizontal center line. The electrical shape of the antenna is composed of double H-plane SIW based horn antennas and radio frequency micro electro mechanical system (RF-MEMS) actuators. The RF-MEMS actuators are integrated in the planar structure of the antenna for reconfiguring the radiation pattern by adding nulls to the pattern. The proper activation/deactivation of the switches alters the modes distributed in the structure and changes the radiation pattern. When different combinations of switches are on or off, the radiation patterns have 2, 4, 6, 8,... nulls with nearly similar operating frequencies. The attained peak gain of the proposed antenna is higher than 5 dB at any point on the far field radiation pattern except at the null positions. The design procedure and closed form formulation are provided for analytical determination of the antenna parameters. Moreover, the designed antenna with an overall dimensions of only 63:6 ×50 mm2 is fabricated and excited through standard SMA connector and compared with the simulated results. The measured results show that the antenna can clearly alters its beams using the switching components. The proposed antenna retains advantages of low cost, low cross-polarized radiation, and easy integration configuration.
Citation
Bahram Khalichi, Saeid Nikmehr, and Ali Pourziad, "Reconfigurable SIW Antenna Based on RF-MEMS Switches," Progress In Electromagnetics Research, Vol. 142, 189-205, 2013.
doi:10.2528/PIER13070204
References

1. Choi, J. and S. Lim, "Frequency and radiation pattern reconfigurable small metamaterial antenna using its extraordinary zeroth-order resonance," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 2119-2127, 2010.

2. Chen, B., T. Chen, Y. Jiao, and F. Zhang, "A reconfigurable microstrip antenna with switchable polarization," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 63-68, 2006.

3. Lin, S.-Y., Y.-C. Lin, and J.-Y. Lee, "T-strip fed patch antenna with reconfigurable polarization," Progress In Electromagnetics Research Letters, Vol. 15, 163-173, 2010.

4. Zhang, S., G. H. Huff, J. Feng, and J. T. Bernhard, "A pattern reconfigurable microstrip parasitic array," IEEE Trans. Antennas Propagat., Vol. 52, 2773-2776, 2004.

5. Ali, M. T., M. N. M. Tan, A. R. B. Tharek, M. R. B. Kamarudin, M. F. Jamlos, and R. Sauleau, "A novel of reconfigurable planar antenna array (RPAA) with beam steering control," Progress In Electromagnetics Research B, Vol. 20, 125-146, 2010.

6. Monti, G., L. Corchia, and L. Tarricone, "Planar bowtie antenna with a reconfigurable radiation pattern," Progress In Electromagnetics Research C, Vol. 28, 61-70, 2012.

7. Kamarudin, B., P. Hall, F. Colombel, and M. Himdi, "Electronically switched beam disk-loaded monopole array antenna," Progress In Electromagnetics Research, Vol. 101, 339-347, 2010.

8. Cheng, Y. J., "Substrate integrated waveguide frequency-agile slot antenna and its multibeam application," Progress In Electromagnetics Research, Vol. 130, 153-168, 2012.

9. Kang, W., K. H. Ko, and K. Kim, "A compact beam reconfigurable antenna for symmetric beam switching," Progress In Electromagnetics Research, Vol. 129, 1-16, 2012.

10. Pourziad, A., S. Nikmehr, and H. Veladi, "A novel multi-state integrated RF MEMS switch for reconfigurable antennas applications," Progress In Electromagnetics Research, Vol. 139, 389-406, 2013.

11. Rebeiz, G. M., RF MEMS: Theory, Design and Technology, Wiley, New York, 2003.

12. Brown, E., "RF-MEMS switches for reconfigurable integrated circuit," IEEE Trans. Microw. Theory Tech., Vol. 46, 1998.

13. Brown, E. R., "On the gain of a reconfigurable-aperture antenna," IEEE Trans. Antennas Propagat., Vol. 49, 1357-1362, 2001.

14. Raedi, Y., S. Nikmehr, and A. Pourziad, "A novel bandwidth enhancement technique for X-band RF MEMS actuated reconfigurable reflectarray," Progress In Electromagnetics Research, Vol. 111, 179-196, 2011.

15. Xu, F. and K. Wu, "Guided waves and leakage characteristics of substrate integrated waveguides," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 66-73, 2005.

16. Deslandes, D. and K. Wu, "Accurate modeling, wave mechanisms, and design considerations of substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 54, 2516-2526, 2006.

17. Salehi, M. and E. Mehrshahi, "A closed-form formula for dispersion characteristics of fundamental SIW mode," IEEE Microw. Wireless Compon. Lett., Vol. 21, 4-6, 2011.

18. Zhang, Z. G., Y. Fan, Y. J. Cheng, and Y.-H. Zhang, "A novel multilayer dual-mode substrate integrated waveguide complementary filter with circular and elliptic cavities," Progress In Electromagnetics Research, Vol. 127, 173-188, 2012.

19. Wu, D., Y. Fan, M. Zhao, and B. Zheng, "Vertical transition and power divider using via walled circular cavity for multilayer millimeter wave module," Journal of Electromagnetics Waves and Applications, Vol. 23, No. 5-6, 729-735, 2009.

20. Che, W., E. Yung, K. Wu, and X. Nie, "Design investigation on millimeter-wave ferrite phase shifter in SIW," Progress In Electromagnetics Research, Vol. 45, 263-275, 2004.

21. Bakhtafrooz, A., A. Borji, D. Busuioc, and S. Safavi-Naeini, "Novel two-layer millimeter-wave slot array antennas based on substrate integrated waveguides," Progress In Electromagnetics Research, Vol. 109, 475-491, 2010.

22. Lee, S., S. Yang, A. E. Fathy, and A. Elsherbini, "Development of a novel UWB vivaldi antenna array using SIW technology," Progress In Electromagnetics Research, Vol. 90, 369-384, 2009.

23. Djera, T. and K.Wu, "Corrugated substrate integrated waveguide (SIW) antipodal linearly tapered slot antenna array fed by quasi-triangular power divider," Progress In Electromagnetics Research C, Vol. 26, 139-151, 2012.

24. Cheng, Y. J., W. Hong, and K. Wu, "Design of a Monopulse antenna using a dual V-type linearly tapered slot antenna (DVLTSA)," IEEE Trans. Antennas Propagat., Vol. 56, 2903-2909, 2008.

25. Cheng, S., H. Yousef, and H. Kratz, "79 GHz slot antennas based on substrate integrated waveguides in a flexible printed circuit board," IEEE Trans. Antennas Propagat., Vol. 57, 64-70, 2009.

26. Kazemi, R., A. E. Fathy, and R. A. Sadeghzadeh, "Dielectric rod antenna array with substrate integrated waveguide planar feed network for wideband applications," IEEE Trans. Antennas Propagat., Vol. 60, No. 3, 1312-1319, 2012.

27. Balanis, C. A., Antenna Theory Analysis and Design, Wiley, 2005.

28. Wang, H., D.-G. Fang, B. Zhang, and W.-Q. Che, "Dielectric loaded substrate integrated waveguide H-plane horn antennas," IEEE Trans. Antennas Propagat., Vol. 58, 640-647, 2010.

29. Mallahzadeh, R. and S. Esfandiarpour, "Wideband H-plane horn antenna based on ridge substrate integrated waveguide (RSIW)," IEEE Antennas Wireless Propagat. Lett., Vol. 11, 85-88, 2012.

30. Pozar, D., Microwave Engineering, 3rd Edition, Wiley, 2005.

31. Rajagopalan, H., Y. Rahmat-Samii, and W. A. Imbriale, "RF MEMS actuated reconfigurable reflectarray patch-slot element," IEEE Trans. Antennas Propagat., Vol. 56, 3689-3699, 2008.