Vol. 142
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-10-09
Vectorial Electric Field Monte Caro Simulations for Focused Laser Beams (800 nm -2220 nm ) in a Biological Sample
By
Progress In Electromagnetics Research, Vol. 142, 667-681, 2013
Abstract
Here we develop a method that combines vectorial electric field Monte Carlo simulation with Huygens-Fresnel principle theory to determine the intensity distribution of a focused laser beam in a biological sample. The proper wavelengths for deep tissue imaging can be determined by utilizing our method. Furthermore, effects of anisotropic factor, scattering and absorption coefficients on the focal spots are analyzed. Finally, the focal beams formed by objective lenses with different values of numerical aperture are also simulated to study the focal intensity in the biological sample.
Citation
Fuhong Cai, Jiaxin Yu, and Sailing He, "Vectorial Electric Field Monte Caro Simulations for Focused Laser Beams (800 nm -2220 nm ) in a Biological Sample," Progress In Electromagnetics Research, Vol. 142, 667-681, 2013.
doi:10.2528/PIER13080705
References

1. Boas, D. A., D. H. Brooks, E. L. Miller, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Signal Process Mag., Vol. 18, No. 6, 57-75, 2001.
doi:10.1109/79.962278

2. Karanasiou, I. S., N. K. Uzunoglu, and A. Garetsos, "Electromagnetic analysis of a non-invasive 3D passive microwave imaging system," Progress In Electromagnetics Research, Vol. 44, 287-308, 2004.
doi:10.2528/PIER03080801

3. Goharian, M., M. Soleimani, and G. R. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003

4. Yodh, A. and B. Chance, "Spectroscopy and imaging with diffusing light," Phys. Today, Vol. 48, 34-40, 1995.
doi:10.1063/1.881445

5. Kobat, D., M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, "Deep tissue multiphoton microscopy using longer wavelength excitation," Opt. Express, Vol. 17, No. 16, 13354-13364, 2009.
doi:10.1364/OE.17.013354

6. Horton, N. G., K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, "In vivo three-photon microscopy of subcortical structures within an intact mouse brain," Nature Photonics, Vol. 7, 205-209, 2013.
doi:10.1038/nphoton.2012.336

7. Wang, P., H.-W. Wang, M. Sturek, and J.-X. Cheng, "Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm," J. Biophotonics, Vol. 5, No. 1, 25-32, 2012.
doi:10.1002/jbio.201100102

8. Wang, L., S. L. Jacques, and L. Zheng, "MCML---Monte Carlo modeling of light transport in multi-layered tissues," Computer Methods and Programs in Biomedicine, Vol. 47, No. 2, 141-146, 1995.
doi:10.1016/0169-2607(95)01640-F

9. Guo, Z., F. Cai, and S. He, "Optimization for brain activity monitoring with near infrared light in a four-layered model of the human head," Progress In Electromagnetics Research, Vol. 140, 277-295, 2013.

10. Pawley, J. B., "Handbook of Biological Confocal Microscopy," Springer, 2006.

11. Xu, M., "Electric field Monte Carlo simulation of polarized light propagation in turbid media," Opt. Express, Vol. 12, No. 26, 6530-6539, 2004.
doi:10.1364/OPEX.12.006530

12. Hayakawa, C. K., V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, "Amplitude and phase of tightly focused laser beams in turbid media," Phys. Rev. Lett., Vol. 103, 043903, 2009.
doi:10.1103/PhysRevLett.103.043903

13. Hayakawa, C. K., E. O. Potma, and V. Venugopalan, "Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues," Biomed. Opt. Express, Vol. 2, No. 2, 278-299, 2011.
doi:10.1364/BOE.2.000278

14. Wang, Y., P. Li, C. Jiang, J.Wang, and Q. Luo, "GPU accelerated electric field Monte Carlo simulation of light propagation in turbid media using a finite-size beam model," Opt. Express, Vol. 20, No. 15, 16618-16630, 2012.
doi:10.1364/OE.20.016618

15. Li, M., P. Lu, Z. Yu, L. Yan, Z. Chen, C. Yang, and X. Luo, "Vector Monte Carlo simulations on atmospheric scattering of polarization qubits," J. Opt. Soc. Am. A, Vol. 30, 448-454, 2013.
doi:10.1364/JOSAA.30.000448

16. Hale, G. M. and M. R. Querry, "Optical constants of water in the 200-nm to 200-mu m wavelength region," Appl. Opt., Vol. 12, No. 3, 555-563, 1973.
doi:10.1364/AO.12.000555

17..
doi:http://refractiveindex.info/?group=LIQUIDS&material=Water

18. Ding, H., J. Q. Lu, W. A. Wooden, P. J. Kragel, and X.-H. Hu, "Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm," Phys. Med. Biol., Vol. 51, No. 6, 1479-1489, 2006.
doi:10.1088/0031-9155/51/6/008

19. Xu, X. and W. W. Webb, "Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm," JOSA B, Vol. 13, No. 3, 481-491, 1996.
doi:10.1364/JOSAB.13.000481

20. Song, Y. J., M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, "Environmentally stable, high pulse energy Yb-doped large-mode-area photonic crystal fiber laser operating in the soliton-like regime," IEEE Photonics Technology Letters, Vol. 20, No. 13, 1088-1090, 2008.
doi:10.1109/LPT.2008.924300

21. Wang, Y. M., B. Judkewitz, C. A. DiMarzio, and C. Yang, "Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light," Nature Communications, Vol. 3, 928, 2012.
doi:10.1038/ncomms1925