PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 142 > pp. 667-681

VECTORIAL ELECTRIC FIELD MONTE CARO SIMULATIONS FOR FOCUSED LASER BEAMS (800 NM-2220 NM) IN A BIOLOGICAL SAMPLE

By F. Cai, J. Yu, and S. He

Full Article PDF (773 KB)

Abstract:
Here we develop a method that combines vectorial electric field Monte Carlo simulation with Huygens-Fresnel principle theory to determine the intensity distribution of a focused laser beam in a biological sample. The proper wavelengths for deep tissue imaging can be determined by utilizing our method. Furthermore, effects of anisotropic factor, scattering and absorption coefficients on the focal spots are analyzed. Finally, the focal beams formed by objective lenses with different values of numerical aperture are also simulated to study the focal intensity in the biological sample.

Citation:
F. Cai, J. Yu, and S. He, "Vectorial Electric Field Monte Caro Simulations for Focused Laser Beams (800 Nm -2220 Nm ) in a Biological Sample," Progress In Electromagnetics Research, Vol. 142, 667-681, 2013.
doi:10.2528/PIER13080705
http://www.jpier.org/PIER/pier.php?paper=13080705

References:
1. Boas, D. A., D. H. Brooks, E. L. Miller, C. A. Dimarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Signal Process Mag., Vol. 18, No. 6, 57-75, 2001.
doi:10.1109/79.962278

2. Karanasiou, I. S., N. K. Uzunoglu, and A. Garetsos, "Electromagnetic analysis of a non-invasive 3D passive microwave imaging system," Progress In Electromagnetics Research, Vol. 44, 287-308, 2004.
doi:10.2528/PIER03080801

3. Goharian, M., M. Soleimani, and G. R. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003

4. Yodh, A. and B. Chance, "Spectroscopy and imaging with diffusing light," Phys. Today, Vol. 48, 34-40, 1995.
doi:10.1063/1.881445

5. Kobat, D., M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, "Deep tissue multiphoton microscopy using longer wavelength excitation," Opt. Express, Vol. 17, No. 16, 13354-13364, 2009.
doi:10.1364/OE.17.013354

6. Horton, N. G., K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, "In vivo three-photon microscopy of subcortical structures within an intact mouse brain," Nature Photonics, Vol. 7, 205-209, 2013.
doi:10.1038/nphoton.2012.336

7. Wang, P., H.-W. Wang, M. Sturek, and J.-X. Cheng, "Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm," J. Biophotonics, Vol. 5, No. 1, 25-32, 2012.
doi:10.1002/jbio.201100102

8. Wang, L., S. L. Jacques, and L. Zheng, "MCML---Monte Carlo modeling of light transport in multi-layered tissues," Computer Methods and Programs in Biomedicine, Vol. 47, No. 2, 141-146, 1995.
doi:10.1016/0169-2607(95)01640-F

9. Guo, Z., F. Cai, and S. He, "Optimization for brain activity monitoring with near infrared light in a four-layered model of the human head," Progress In Electromagnetics Research, Vol. 140, 277-295, 2013.

10. Pawley, J. B., "Handbook of Biological Confocal Microscopy," Springer, 2006.

11. Xu, M., "Electric field Monte Carlo simulation of polarized light propagation in turbid media," Opt. Express, Vol. 12, No. 26, 6530-6539, 2004.
doi:10.1364/OPEX.12.006530

12. Hayakawa, C. K., V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, "Amplitude and phase of tightly focused laser beams in turbid media," Phys. Rev. Lett., Vol. 103, 043903, 2009.
doi:10.1103/PhysRevLett.103.043903

13. Hayakawa, C. K., E. O. Potma, and V. Venugopalan, "Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues," Biomed. Opt. Express, Vol. 2, No. 2, 278-299, 2011.
doi:10.1364/BOE.2.000278

14. Wang, Y., P. Li, C. Jiang, J.Wang, and Q. Luo, "GPU accelerated electric field Monte Carlo simulation of light propagation in turbid media using a finite-size beam model," Opt. Express, Vol. 20, No. 15, 16618-16630, 2012.
doi:10.1364/OE.20.016618

15. Li, M., P. Lu, Z. Yu, L. Yan, Z. Chen, C. Yang, and X. Luo, "Vector Monte Carlo simulations on atmospheric scattering of polarization qubits," J. Opt. Soc. Am. A, Vol. 30, 448-454, 2013.
doi:10.1364/JOSAA.30.000448

16. Hale, G. M. and M. R. Querry, "Optical constants of water in the 200-nm to 200-\mu m wavelength region," Appl. Opt., Vol. 12, No. 3, 555-563, 1973.
doi:10.1364/AO.12.000555

17., .
doi:http://refractiveindex.info/?group=LIQUIDS&material=Water

18. Ding, H., J. Q. Lu, W. A. Wooden, P. J. Kragel, and X.-H. Hu, "Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm," Phys. Med. Biol., Vol. 51, No. 6, 1479-1489, 2006.
doi:10.1088/0031-9155/51/6/008

19. Xu, X. and W. W. Webb, "Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm," JOSA B, Vol. 13, No. 3, 481-491, 1996.
doi:10.1364/JOSAB.13.000481

20. Song, Y. J., M. L. Hu, C. L. Wang, Z. Tian, Q. R. Xing, L. Chai, and C. Y. Wang, "Environmentally stable, high pulse energy Yb-doped large-mode-area photonic crystal fiber laser operating in the soliton-like regime," IEEE Photonics Technology Letters, Vol. 20, No. 13, 1088-1090, 2008.
doi:10.1109/LPT.2008.924300

21. Wang, Y. M., B. Judkewitz, C. A. DiMarzio, and C. Yang, "Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light," Nature Communications, Vol. 3, 928, 2012.
doi:10.1038/ncomms1925


© Copyright 2014 EMW Publishing. All Rights Reserved